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Preface

The first Summer Program of the Center for Turbulence Research was held during

the four week period July 13 to August 7, 1987. The program focused on the use of

databases obtained from direct numerical simulations of turbulent flows, for study

of turbulence physics and modeling.

Thirty-three participants from eight countries were selected on the basis of their

research proposals. They were divided into five groups:

* Stochastic decomposition/chaos/bifurcation

• Two-point closure (or k-space) modeling

• Scalar transport/reacting flows

• Reynolds stress modeling

• Structure of turbulent boundary layers.

In addition to these participants, the program benefited from the week long par-

ticipation of Robert Kraichnan and Evgeny Novikov. There were 8 tutorials and 4

seminars presented by leading experts in different areas of turbulence research.

The databases consisted of decaying and forced isotropic turbulence, homoge-

neous turbulence subjected to strain, homogeneous shear flow, fully developed tur-

bulent channel flow and the turbulent boundary layer. The Reynolds numbers

considered were low to moderate; Taylor micro-scale Reynolds number of about

50 in homogeneous flows and Reynolds number based on free-stream velocity and
boundary layer thickness of about 3000-10000. Most simulation fields included fields

of passive scalar contaminant as well as velocity.

The research reports that resulted from the 1987 summer program are included

in the following pages. This is an account of a short term, but intensive, study of

ideas and models of turbulent flows. Therefore, in most cases, the results should

be considered as preliminary. It is expected that the studies will be continued

and, in due course, the results will be submitted to the appropriate journals by the

individual authors. In this volume the reports of each research group are clustered

together, preceded by an overview written by the coordinator of that group.

Timely reporting of many of these projects occurred at the American Physi-

cal Society Fluid Dynamics Division Meeting in Eugene Oregon, Nov 22-24, 1987.

Twenty abstracts based on the work accomplished during the summer program were

presented at this meeting.

In our opinion, the Summer Program proved to be a valuable setting for exchange

of conceptual ideas between participants with varied backgrounds and interests.

The Summer Program demonstrated the viability of using simulation databases as

a powerful tool in turbulence research, and the databases proved to be effective

catalysts for interaction among turbulence researchers.

Parviz Moin

William C. Reynolds

John Kim
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Overview of research by the stochastic
decomposition/chaos/bifurcation group

This group consisted of four loosely inter-related projects with the common objective

of understanding the mechanics of wall-bounded turbulent flows. All projects used

the un-processed channel flow database (Kim, Moin, Moser 1987) or the velocity

two-point correlation tensor computed from it (Moin & Moser 1987).

The invited participants were:

Professor Ronald J. Adrian (University of Illinois)

Dr. Nadine Aubry (Cornell University)

Dr. Julian C. R. Hunt (University of Cambridge)

Professor Javier Jimenez (Universidad Politecnica, Madrid, & UAM-IBM, Spain)

The local participants were:

Dr. Laurence R. Keefe (Center for Turbulence Research)

Professor Parviz Moin (Stanford University & NASA Ames)

Dr. Robert D. Moser (NASA Ames)

Hunt's self-similarity hypothesis for velocity correlations states that the two-point

correlation of normal velocity v, when normalized by the intensity v-_ at the point

furthest from the wall is of the form f(y/yl). Using numerically generated corre-

lations, this hypothesis was shown to be valid throughout a large portion of the

boundary layer. A similar collapse was obtained for R,,, in the log layer. Hunt and

coworkers had already shown that f is linear in shear free boundary layers. Com-

parison with their results clearly shows that shear reduces the correlation length of

the normal velocity, in the normal direction. The variation of eddy scales in the

spanwise direction was also investigated, and a strong dependence on shear was

found. These results should be very useful in turbulence modeling and in other

applications where two-point correlation data are used (e.g, see below).

The eigenfunctions of the spatial two-point correlation tensor were used in Aubry's

dynamical systems representation of wall layer turbulence. In their previous work

Aubry, Holmes, Lumley & Stone (1986) used eigenfunctions obtained from the ex-

perimental measurements of Herzog (1986) in the near wall region of a turbulent

boundary layer. Employing these eigenfunctions, which appeared physically as roll-

cells, they obtained a highly truncated solution of the Navier Stokes equations and

used methods of dynamical system theory to analyze the results. The results exhib-

ited intermittency which was associated with the bursting events in the sublayer.

A similar analysis was performed at the CTR using the eigenfunctions computed

from simulation databases (Moin & Moser 1987). The results were different from

those of Aubry et al. In particular, limit cycle behavior was observed just prior to

intermittency, rather than the fixed point behavior found previously. As a result

the character of the intermittency is different and it is significantly more sensitive

PRECEDING PAGE BLANK NOT FILMED
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to the bifurcation or eddy viscosity parameter. In view of the significance of this

work in relating dynamical systems theory to the structure of turbulence, further

work is required to determine the sensitivity of the results to various computational

parameters and other inputs.

Two-point correlation data was also used to extend, to three dimensions, the

work of Moin, Adrian & Kim (1987) on stochastic estimation of conditional ed-

dies. The previous work applied only in planes transverse to channel flow. With

stochastic estimation, one approximates conditional averages using the two-point

correlation tensor. In addition, the theory was extended to include specification of

conditions at more than one point. An important result of this investigation was the

verification that linear stochastic estimation indeed provides an accurate represen-

tation of conditional eddies. It was also shown that two-point stochastic estimates

of the conditional eddies provide reasonable representations of the instantaneous

flow structures. This technique is capable of generating the asymmetric structures

that occur in the instantaneous flow field. Using conditions obtained from shear

layers in the instantaneous field (see below), a simplified model of the shear layers

was proposed which consisted of inclined vortical structures surrounding each shear

layer.

Perhaps the most dramatic observation in this group was the discovery that

turbulent channel flow contains a high density of strong, and highly visible, shear

layers. The shear layers are regions of strong spanwise vorticity protruding from the

wall region into the outer layers. Apparently the dominance of these shear layers, at

least for the low Reynolds numbers considered here, has been overlooked previously.

More importantly, the patterns of these shear layers, depicted in contour plots of

spanwise vorticity in planes normal to the wall, and in the flow direction, strongly

resembled those in Jimenez's (1987) two-dimensional numerical solutions. Although

in channel flow these shear layers are three dimensional, the generation mechanism

appears to be the same as in the two-dimensional case. The shear layers were

followed in time and this generation process was observed directly. Based on these

observations a simple model was proposed to explain vorticity ejection from the

sublayer and the production of the shear layers. This model is essentially equivalent

to the mechanism responsible for the instability of 2-D Tollmien Schlichting waves.

Finally, by reducing the size of the computational box, futile attempts were made

to study the dynamics of one shear layer in isolation (in the absence of complex

interactions with other structures). One of the by products of this latter study

was an interesting numerical solution which displayed three-dimensional turbulence

on one side of the channel, and essentially two-dimensional flow on the other. The

average wall shear stress of the turbulent layer falls between the values characteristic

of the 2-D non-linear solutions and the 3-D turbulent solutions.

Parviz Moin
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Stochastic estimation of conditional
eddies in turbulent channel flow

By R. J. ADRIAN 1, P. MOIN 2,3 AND R. D. MOSER 2

1. Background

In two recent studies, stochastic estimation algorithms were applied to numerical

simulation data bases (Adrian & Moin 1987, Moin, Adrian & Kim 1987). The best

(in the mean-square sense) estimate of the flow field in the vicinity of a point or

points where certain data are given is the conditional average, {u(x') [ E(x)), where

E(x) denotes the data at point x. In stochastic estimation one approximates the

conditional averages by a restricted form, again determined so as to minimize mean

square error. Linear stochastic estimation takes a form that is linear in the given

data, E(x). In Adrian & Moin (1987), the homogeneous shear flow data base was

used, and E(x) included the complete kinematic state at a point, consisting of the

velocity field and the deformation tensor. In the study of Moin, et al. (1987), a

turbulent channel flow data base was used, and E included only the velocity vector.

In this latter study, the estimated eddy was obtained in cross-stream (y, z) planes.

In both studies the probability density functions were used to specify the data, E.

2. Multi-point stochastic estimation

The present studies contain two new elements: three- dimensional structure of

inhomogeneous turbulence, and estimation using two-point events. The complete

two-point correlation tensor, Rij(y, yW,rz,vz) was recently computed by Moin &

Moser (1987) from the channel-flow data base and was utilized in the present study.

111 addition, the stochastic estimation fornmlation was extended to include data at

any number of points.

Consider any array of points (x j, x2,..., x,_ ). The conditional averages of interest

are conditional eddies defined by

(u(x') I u(xl), U(XN))

or, more briefly

(u' [ E)

where

E = [vl __<ul < vl + dr1 and.., and VN < UN < VN + dvN]

1 University of Illinois

2 NASA-Ames Research Center

3 Stanford University

tJRECF2)ING PAGE BLANK NOT FILMEd)



8 R.J. Adrian, P. Moin and R. D. Moser

is the N-point vector event consisting of 3N components. We wish to estimate

(u' I E) as a linear function of the data E. Nonlinear estimation usually results in a

small correction {Adrian 1979, Adrian et al. 1987), so attention has been restricted
to the linear estimate. Let us order the data vector as

E = [ull,u12, u13,u21,...,UN3] = [E1,E2,...E3N]

Tile linear stochastic estimate of (u' [ E) is

= LijE . (1)

Unless otherwise indicated, the summation convention is implied for repeated in-

dices. Minimizing the mean square error results in the following system of equations
for the estimation coefficients

(EjEk) Lij = (u_iEk), j,k = 1,2,...,3N,
(2)

i = 1,2,3.

In the above equation, Lij = Lij(x', xl, x2,... XN) and

(u_Ek) = R/j(x',xo) a = 1 + INT(k/3), j = k - 3a + 1. (3)

3. Objective

This investigation offered the opportunity to address, for the first time, several

long-standing issues regarding linear estimation and coherent structures, and to

answer more completely some questions that have been addressed partially, but

never with the benefit of full, three-dimensional information. The objectives were:

a. Determine how well linear estimates approximate the field obtained by true con-

ditional averaging, using events such as those in quadrant analysis.

b. Determine the extent to which the three-dimensional linearly estimated fields

correspond to coherent structures, and the degree and manner in which they

differ. When is it appropriate to interpret a linear estimate as a fluid entity, and

when it nmst be considered to be only as a smoothed mathematical entity?

c. Evaluate the type and nature of the structural information gained by employing

several different types of events.

d. Learn more about the 3-D structure of important coherent motions that occur in
wall turbulence.

4. Results of the investigation

The validity of the linear stochastic estimation approximation of the conditional

averages has been investigated previously for different types of conditional averages

by comparison of experimentally measured conditional averages with their linear

estimates. While experimental comparisons have been extensive (see Adrian et al.

1987), they have been limited to low dimensional results. In this investigation, a full
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FIGURE 1.
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FIGURE 2. Linear stochastic estimate of (w'_(x') I Q2) using Kim and Moin's

(1986) Q2 event at y+ = 99.

three-dimensional conditional field, determined using Kim &Moin's (1986) quad-

rant 2 conditional average, Figure 1, was compared to its linear estimate computed

for the velocity vector u(x) conditional oil the same quadrant 2 event in Figure 2.

The former quantity (u' I Q2) is approximated in terms of the linear estimate by

the following steps:

(u'_ I Q2) -/o2 Lij(x'x')uJ(x)P{u(x))du=Lij{x'x')iQ2 ujP(u(x))du,
(4)

where the integral extends over the range of u where the event Q2 = {ul(x) <

0, _2(x) < 0, and uv(x) < 10_i_(x)} is satisfied.

Comparison of Figures 1 and 2 shows surprisingly close agreement between the

linear estimate and the conditional average. Figure 3 shows contours of the u-

component velocity in channel flow conditionally averaged, given Kim & Moth's

(1986) Q2 event, and comparison with the linear estimate in Figure 4, again, shows

good agreement. These results, coupled with the aforementioned experimental in-

vestigation, lead us to conclude that linear estimate is a reliable approximation of

the conditional average.

To study the structure of channel-flow turbulence, the first step was to identify a

structure that was judged to recur frequently and to be dynamically significant. To

this end, the cube of velocity data available in a velocity field was scanned to locate

the positions of maximum instantaneous Reynolds stress,uv. The velocity field in

the vicinity of the maximum Reynolds shear stress was surveyed by examining many
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t

I i I I I I
X

FIGURE 3. Contours of (u' I Q2) in the x-z plane passing through x (y+ = 99).

I

FIGURE 4.

I I

X

Contours of the linear estinaate of (u' [ Q2). Same plane as in Figure 3.

different quantities in many different planes, and a reasonably complete picture of

the physical structure of the flow in this region was obtained.

The structure of the flow is illustrated in Figures 5 through 10. Figures 5 and

6 show the Reynolds stress in the x-z and x-y planes. They reveal two maxima

occurring at x_ = (30,25,20) and x2 = (35,25,20), where the numbers in the

parentheses refer to grid indices. The velocities at these maxima are denoted by ul

and u2. The right-most maximum is associated with the outflow of low-momentum

fluid, and the left-most maximum is associated with the inflow of high-momentum

fluid. This pair of Q2/Q4 events is associated with a region of organized transverse

vorticity, Figure 7. The velocity field in the x-y plane in the neighborhood of this

point is shown in Figure 8. The vorticity w_ is associated with a shear layer that

forms between the Q2 and Q4 events. This shear layer is visible in the velocity

profile of Figure 8. A cross-section of the flow in the x-z plane passing through the

Q4 event is shown in Figure 9. In the y-z plane, it is clear that xl is located on the

down-wash side of a streamwise vortex. The v-component of velocity in the vicinity

of the Q2/Q4 event is shown in Figure 10.
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×1 X

X

FIGURE 5. Instantaneous Reynolds shear stress contours in the x-z plane.

11

X 1 X2

X

FIGURE 6. Instantaneous Reynolds shear stress contours in the x-y plane.

I X1 X 2

! I

X

FIGURE 7. Contours of instantaneous wz in the x-y plane passing through xl.

The degree to which the linear stochastic estimate is able to represent an in-

stantaneous structure was evaluated by picking the velocity vectors at two points,

xl and x2 centered on the Q2 and Q4 events, respectively. Using these vectors as

input to the two-point linear stochastic estimator, the fluctuating velocity profile

was calculated from equations (1) and (2).

Figure 11 shows contours of the linearly estinmted fluctuating wz. There is consid-

erable similarity between these contours and the contours of the random realization

in Figure 7. A notable difference is that, in the instantaneous realization, the vor-

ticity changes sign twice below the shear layer (see dimenez et al. in this volume).

Comparison of the contours of the v-component of velocity plotted in Figure 12
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FIGURE 8. Instantaneous total velocity vectors in tile x-y plane passing through
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FIGURE 9. Instantaneous velocity vectors in the y-z plane passing through xl.
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FIGURE 10. Contours of the instantaneous v-component in the x-z plane passing

through x_ at y+ = 30.
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Xl X 2

X

FIGURE 11. Linear estimate of the _o_ in the x-y plane through xl given the Q4

event at xl and the Q2 event at x2.

Z

X 1 X2

1 I T _ ..... T ........

X

FIGURE ] 2. Linear estimate of v-component in the z-y plane passing through xl

given the Q4 event at xl and the Q2 event at x2.

with tile corresponding instantaneous contours plotted in Figure 10 is revealing.

Tile instantaneous realizations are, of course, highly deformed, but they do reveal

a region of large positive velocity surrounded by two regions of negative v-velocity

in the downstream direction, and in the upstream direction an oppositely signed

triplet, exactly as shown in the linear estimate. The velocity vectors in the y-z plane

through xl, Figure 13, show a strong impingement flow with a streamwise vortex

present. Note that the vortical pattern reverses sign in a plane passing through x2,

resulting in flow away from the wall, in Figure 14.

A simplified sketch of the coherent region under investigation is shown in Figure

15. It consists of two pairs of streamwise vortices, one rotating so as to produce

a Q2 event, i.e. low monlentum fluid being pumped upwards, and the other pair

lying farther upstream rotating so as to produce a Q4 event with high-momentum

fluid being pumped downwards toward the wall. In the region between these pairs

of vortices, the opposing flows of the Q2 and Q4 event.s generate a stagnation-point

flow and an associated shear-layer tongue which has a narrow extent. This may be

the origin of the region of large w_ shown in Figures 7 and 11. It is also revealed

in Figure 16, which shows (u,w) vectors in the x-z plane. It should be noted that

the sketch in Figure 15 is composed of two pairs of symmetric vortices; however,



14 R. J. Adrian, P. Moin and R. D. Moser

¥

Xl jiiiiiiiiiii iiiii:

i,liL,,, ii J)iiii ) i]

[;::ii_iii_i_!iii!!!

I ' r I _:/I##. ...........1 t " __¢._ ...........

¢.-" : ii --"i i i i i " i :

FIGURE 13. Linear estimate of (v,w) in the y-z plane passing through xl given

the Q4 event at xl and the Q2 event at x2.
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FIGURE 14. Linear estimate of (v,w) in the y-z plane passing through x2 given

the Q4 event at x_ and the Q2 event at x2.

the instantaneous as well as the estimated flow patterns show a pronounced single

vortex followed by a pair. The sketch should be viewed as a simplified average

portrait of the flow.

The question arises as to the effect upon the linear stochastic estimate of selecting

different points and different combinations of velocity vectors at those points. In the
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SHEAR LAYER

FIGURE 15. Sketch of the three-dimensional structure associated with the Q4/Q2
event.

preceding Q4/Q2 event, the events were far apart (6Ax), and they were characteris-

tic of sweep and ejection events lying some distance away from the shear layer that

they appeared to cause. Alternatively, one could concentrate on the shear layer.

We chose to specify two points lying very close to the shear layer on either side of

it: xl = (32, 26, 20) and x_ = (33, 24, 20). We input the velocity vectors ul and u2

taken from the instantaneous field at those points. The net effect was to specify

approximately the average velocity between the points and the velocity derivatives

(Oui/Oxj), since (ui2 -uil)/Axj is approximately the deformation tensor for small

Axj.

Figure 17 shows contours of the linearly estimated v-component velocity that

result from the specification of the shear event. Figure 10 shows the contours of the

realization (points are marked as xl, x_). The comparison is good, but the strong

lobe to the side of xl is not captured.

Figure 18 shows the estimated z component of vorticity in the x-y plane. It

compares well with Figure 11 for the Q4/Q2 event. In Figure 19, the velocity
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FIGURE 16. Linearly estimated (u, w) vectors in the z-z plane passing through x_

given the Q4 event at x_ and the Q2 event at x2.
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FIGURE 17. Contours of linearly estimated v-components in an z-z plane, five

grid points below x_ (y+ = 21) given the shear layer event.

vectors of the estimated eddy in the y-z plane passing through x_ reveal a weak

pair ov counter-rotating streamwise vortices near the wall, with a single strong

vortex above them.

Finally, the foregoing results each utilized information at two points in the flow.

The loss of velocity information incurred when velocity at only one point was speci-

fied was also investigated. Figures 20 and 21 show that the linear estimate based on

the single-point Q2 event at x_ = (35, 25, 20) reveals only a single pair of streamwise

vortices. This result suggests that two-point events provide the information needed

to study the interaction between two characteristic structures.

5. Conclusion

The results of this investigation indicate that linear stochastic estimation can be

used effectively in the study of numerical data bases consisting of three-dimensional

vector fields, both velocity and vorticity. It is expected that pressure fields could
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Linear estimate (v, w) in the y-z plane through x_ given the shear

be studied with equal facility, although this avenue has not been explored. Linear

stochastic estimation is surprisingly good at approximating conditional averages, at

least to the extent that the size scales and the shapes of three-dimensional structures

are revealed with relatively little distortion. The linear stochastic estimate is also

surprisingly good at representing instantaneous realizations of flow in the turbulent

wall layer. In part, this may be a consequence of the low Reynolds number of the

flow investigated, and the fact that there are strong characteristic structures in the

flow. Less energetic structures may not be represented with such fidelity.

Two-point stochastic estimation yields more structural information and more

detail than single-point estimation. Interestingly, the locations of the two points are

not too critical, provided velocity vectors input to the stochastic estimate are those

that occur within the structure. This is indicated by the fact that the stochastic

estimates using distant points (Q4/Q2 event) and neighboring points (shear event)
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FIGURE 20.

event u2 (x2).
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Linear estimate of w_ in the plane through x2 given the single-point

w
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FIGURE 21. Linear estimate of v-contours in the x-z plane through x2 given the

single-point event us(x2).

were very sinfilar. Finally, the second point adds structural information which

appears to represent interactions of flow structures in certain circumstances.

The structures we observed occurred repeatedly within the flow, but we cannot

say much about their dominance or the probability of their occurrence without fur-

ther systematic studies of their frequency. However, the combined Q4/Q2 event

does appear to be associated with two pairs of streamwise vortices whose up-flows

and down-flows create a stagnation point following an associated three-dimensional

shear-layer tongue. Such flows can also occur as single events, i.e., Q2 or Q4 in iso-

lation, and significant asymmetries may occur due to cross flows in the z-directions.

Further work is needed to establish the three-dimensional structure of these systems.
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A low dimensional dynamical
system for the wall layer

By N. AUBRY 1 AND L. R. KEEFE 2

Low dimensional dynamical systems which model a fully developed turbulent

wall layer, for y+ < 40 have been derived (Aubry et al. 1986, Aubry, 1987). The

model is based on the optimally fast convergent proper orthogonal decomposition,

or Karhunen-Loeve expansion, proposed by Lumley, 1967. This decomposition

provides a set of eigenfunctions which are derived from the autocorrelation tensor

at zero time lag. Those used in the previous studies were experimentally determined

in a pipe flow at a Reynolds number 8750 based on the mean centerline velocity

and the diameter of the pipe. (Herzog, 1986).

Via Galerkin projection, low dimensional sets of ordinary differential equations

in time, for the coefficients of the expansion, were derived from the Navier Stokes

equations. The energy loss to the unresolved modes was modeled by an eddy vis-

cosity representation, analogous to Heisenberg's spectral model. In the previous

work the equations of a ten dimensional system, consisting of one eigenfunction per

wave number for the zero streamwise wave number, and six spanwise wave numbers

corresponding to a periodic length of 333 wall units, were examined. The solution,

which consisted of longitudinal rolls, exhibited an intermittent behavior(the zero

mode decays to zero). The rolls are initially steady, but then oscillate with slowly

growing amplitude until they "burst" into much more complicated features before

recovering their initial state. The whole sequence then repeats. This is suggestive

of the bursting event observed in visualization experiments (Kline et at., 1967).

This approach may shed light on the basic dynamical mechanism of the fun-

damental bursting event. However, until recently, it. was limited to the specific

experimental flow (Herzog, 1986).

Another set of eigenfunctions and eigenvalues have been obtained from direct.

numerical simulation of a plane channel at a Reynolds number of 6600, based on

the mean centerline velocity and the channel width (Moin & Moser, 1987). This

new set of eigenfunctions is compared to those of Herzog (1986). The expansion

still converges very quickly, since 75% of the kinetic energy is contained in the

first eigenmode. Thus it still seems quite reasonable to truncate the expansion

at the first mode. The energy content at the first eigenmode still drops faster

with streamwise wave numbers than with spanwise wavenumbers, justifying, in

a first approximation, no variations in the streamwise direction. However, the

ratio between the streamwise and cross-stream length scales is not as large as was

observed in the decomposition of Herzog, suggesting that few elongated patterns

1 Cornell University

2 Center for Turbulence Research
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are present. The energy in cross- stream wavenumbers is slightly larger than in the

experimental case and the peak in the spectrum is shifted to a higher wavenumber.

Also, the peak magnitude of the numerically generated spectrum for k, = 0 seems

anomalously large. The contribution of the first eigenmode to the variance of the

velocity fluctuations in the three directions is very similar in both cases. However,

while the contribution of Herzog's first mode to the Reynolds shear stress is 50%

near the wall, 95% at. y+ = 20, 78% at the upper edge of the layer, that of Moin and

Moser exceeds 100% in the region 13 <_ y+ _< 25 (120% at y+ = 25). This apparent

paradox occurs because the contribution of higher order modes to the Reynolds

shear stress is negative in that region. The eigenfunctions themselves are quite

similar in both cases, at least amongst those selected for inclusion in the dynamical

system.

Using the new eigenvalues and eigenfunctions, a new ten dimensional set of ordi-

nary differential equations has been derived using five non-zero cross-stream Fourier

modes with a periodic length of 377 wall units. The coefficients in the equations

are similar to those of the previous study. As in the previous work, the evolution

equations are globally stable, since all the coefficients of the cubic terms are nega-

tive. This is due to the positive contribution of the first eigenmode to the Reynolds

shear stress. The coefficients of the cubic terms are larger with the present data

than in the previous studies. This appears to be caused by the higher proportion

of Reynolds shear stress carried by the first mode.

The new dynamical system has been integrated for a range of the eddy viscosity

parameter c_. For large values, the solution goes to a stable fixed point, involving

only the second and fourth Fourier mode. When tr decreases, this fixed point

undergoes a bifurcation to a limit cycle. As c_ decreases more, the solution becomes

nmch more complicated and intermittent. In contrast, the results of the previous

work showed a transition directly from a fixed point to an intermittent solution

exhibiting the bursts discussed above. The intermittent solution in the present

work exhibits the same basic features previously observed. In the previous work

the solution cyclically visited the neighborhood of two different fixed points, being

attracted to a double homoclinic orbit which connected them. In the new system

the solution switches back and forth in a similar way between different orbits and

limit cycles. When c_ decreases more, we observe much more disorganized motion.

This work is encouraging. Although we could not analyze in detail the bifurca-

tion diagram during the short period of the program, we observed intermittency

of the solution for some values of the parameter a. The appearance of limit cy-

cles introduces periodic motions superposed to the intermittency. We plan more

investigations in future work.
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Self similarity of two point correlations
in wall bounded turbulent flows

By J. C. R. HUNT 1, P. MOIN 2'3, R. D. MOSER 3 AND P. R. SPALART 3

Computational results of Moin & Moser (1987) and Spalart (1986) for two-point

correlations of the normal v component of turbulence at two points y, Yl (yl >

y), from the rigid walls bounding turbulent channel and boundary layer flows for

Reynolds numbers 3200 and 7000 are shown to have an approximately self-similar

form, when plotted in terms of y/yl. It is found that

,,(v)v(u,) v
-/(7, )

where 0 < Y/Yl < 1, f(O) = O, f(1) = 1, and where f is approximately independent

of yl, for yl ranging from about 20 v/u,- to half the channel width;

f _ 2(y/yl) 2 - (y/yl) 3 + .1.

The same kind of self similarity has been predicted for and measured in shear

free boundary layers. But in that case, where f _ Y/Yl, the mechanism is one of

'blocking' or 'splatting' at the wall. Ill these sheared wall layers, the shear also

has an important effect. There are important implications from this research for

modeling wall bounded shear flow.

1. Introduction and Objective

The structure of turbulence at a height y from a wall is affected by the local mean
,ou, bshear at y, (_), y the direct effect of the wall on the eddies, and by the action

of other eddies close to or far from the wall. Some researchers believe that a single

one of these mechanisms is dominant, while others believe that these effects have

to be considered together.

It is important to understand the relative importance of these effects in order to

develop closure models, for example for the dissipation or for the Reynolds stress

equation, and to understand the eddy structure of cross correlation functions and

other measures. The specific objective of this researdl project was to examine the

two point correlation Rv_ of the normal velocity component v near the wall in

a turbulent channel flow and in a turbulent boundary layer. This component of

1 Univ of Cambridge

2 Stanford University

3 NASA Ames Research Center
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FIGURE 1. Diagram to illustrate eddy motion near the ground, (a) typical struc-

ture of an updraft or "thermal" plus the "image" updraft, (b) the relation between

the velocity at Yl and y. The large eddy L, with velocity VL, is centered at height

//1. The small eddy S, with velocity vs is centered at height y. (Their "images"

are L' and S') The profiles are shown of the vertical velocity of the large and small

eddies, of their images and of the combined effect of both.

turbulence is the most sensitive to the relative effects of shear (which amplifies v)

and the blocking effect, of the surface (where v = 0, even in inviscid flow).

Recent research on shear free turbulent boundary layers, (such as occur in thermal

convection between boundaries or in turbulence near a free surface or turbulence

near a density inversion layer) has shown how the bl___ocking effect leads to a self-

similar form for R,_ when expressed as a ratio with v2(yl) (i.e., normalized at the

upper point),

R,,,_ - v(y)v(yl) _ f(_/) _, y y < Yz (1.1)
yl

The theory for the SFBL is valid when 9z is much less than the turbulence scale

far from the boundary. The explanation is given with the aid of figure 1. Let there

be a large eddy (L) centered with maximum velocity at Yz and a small eddy centered

at y. Then the velocity at Yl, v(yl ) ._ VL. The effect of the small eddy at y is small
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FIGURE 2. Measurements in the convective atmospheric boundary layer of the

cross correlation of v at heights y and Yl, normalized by v 2 at Yz- The results are

compared to the approximate form of the theoretical predictions of Hunt (1984),

Rv,, _ y/yz. (-zi/L indicates the state of the convective boundary layer, the higher

-zi/L, the stronger tile convection and the weaker the shear.) From Hunt, Kainal

& Gaynor, (1987).

if y is less than about yl/2. However, the velocity at y

v(y) = ,,, + (y/yl),'L (1.2)

has two components, from tile small eddy and also from the large eddy. Because

the vertical dependence of the large eddy is blocked by the surface, this component

is reduced by a factor of about (Y/Yl) for high Reynolds nmnber turbulence. One

can imagine an image vortex underneath the surface. Since the correlation between

v, and VL is small if y <_ yz/2 the correlation between v(y) and v(yz) and thence

the correlation, normalized at the upper point (N.U.P.) is

Rvv "_ Y/Yl. (1.3)

It is interesting that the theory seems to agree with measurements for the atmo-

spheric boundary layers during thermal convection. See figure 2 from Hunt, Kaimal

& Gaynor 1987. The same general idea might be appropriate for a wall bounded

shear flow at moderate Reynolds number_ but now the velocity at height y is not a

simple function of Y/Yl. In general we expect the component of VL to be given by
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a function g[(y- yl)/L_'(Yl)], depending on the distance between y and y_ and the

scale of turbulence LV(yl) at Yl. Therefore, we might predict:

R,,,, _ g((y - yl)/LV(yl)) (1.4)

But in a wall-bounded flows L(")(yl) is proportional to yl, (at least for unstable

and neutral, but not for stably stratified flows). Therefore, we might expect,

/ Y - yl _ y - Yl
(1.5)

where LV(yl) _ o_yl, which can be written as another function, i.e.

i¢,,,, .f(v/w).

This is the first hypothesis to be tested.

We have argued that the wall "blocks" the normal component of the large-scale

eddies centered above the wall at y = Yl. In a shear flow the streamwise u and

normal v components of the turbulence are correlated at the height Yl, i. e., R=,; =

uv(yl) # 0. Therefore the cross-correlation between the normal velocity v(y) at y

(< ya) and the horizontal velocity at yl, u(y_), should steadily decrease near the

wall as y/yl _ O. If the scaling argument of (1.5) is valid one should expect that,

in the log layer, where y << Yl, the u - v correlation normalized by _ at yl has

the form:

R_v(y,,Y) _ f,_(_) (1.6)R"' =- R_,v(yl, Yl)

This is the second hypothesis to be tested.

In general, correlations involving the horizontal component are affected by the

inactive or irrotational motions. Consequently, the presence of the wall exerts a

weaker influence on these correlations.

The computations of the structure of homogeneous turbulence in a uniform, mean

velocity gradient have shown that the main effect of the mean shear is to reduce the

scale of the turbulence in the spanwise or z direction (Townsend 1976). Unlike many

statistical effects this one is so strong that this channeling of turbulent eddies can be

seen in the instantaneous pattern of streamlines, as derived from flow-visualization

studies and direct simulations (e. g., Lee, Kim and Moin 1987).

The picture of these eddies in shear flow, indicated in figure 3, looks very different

from the conventional circular vortex-like eddy of homogeneous isotropic turbulence;

such as illustrated in figure 1. One suggestion is to represent the eddies as vertically-

elongated structures with a defined spanwise scale a3.

This suggests that the structure of the large eddy is approximately described by

/Y2\ zr3_ (1.7)
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Y a3(Y 1)

(L)

l
Z

FIGURE 3. Schematic of spanwise structure of eddies in the boundary layer,

showing how the spanwise scale (a3) of the large eddy (L) at Yl determines the

spanwise scale closer to the wall (at y). Also, if Yz is smaller, a3 is also smaller.

(as opposed to the isotropic eddy structure where v ._ f[(r_ + r_)/L2]vL). Here

r2 = (Yl - Y) and r3 are the distances from the center of the eddy. Thus at a height

y, and spanwise displacement z,

and therefore

"t,(y, r3)v(yl,O ) _ VLfv(y 1

This model also implies that

k.,,(y,r_)-- R.,,,(y,r_) v(y,r_)v(y,,O)
R,,o(y,O)- .(y,O),,(yl,O)_a(_) (1.S)

where the function g is independent of z. If the hypothesis (1.6) is valid we would

also expect that

-
k,,_(y,o) v(y,o)u(y_,o) a3

Since the eddy structure (1.7) occurs only on strong shear flows, it is natural to

suppose that a3 depends on the mean velocity gradient dU/dy and the vertical

turbulence intensity v' in the log layer. Near the wall the lateral structure is likely

to be determined by instabilities within the wall layer. So we postulate that

t_ t t_ I

az(y,)_a, dU,dy,yl,/_ ) +a_,--.u_. (1.9)

This is the third hypothesis to be tested here.
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FIGURE 4. Cross correlation of v at heights y and y], normalized by v 2 at Yl

computed from direct numerical simulations of the zero pressure gradient boundary

layer (Spalart 1987), and the plane channel (Moin & Moser 1987). Also shown are

the theoretical predictions of Hunt (1984) (R,,, _ y/Yl).

2. Preliminary results

In figure 4 we present a graph of R_,,_(y/yl) combining the results of the compu-

tations of the zero pressure gradient (Z. P. G.) boundary layers (SpaIart 1986) and

of the channel flow (C.F.) (Moin & Moser 1987). The range of data is as follows:

ZPG: _Su_-/v = 300 (where $ is the boundary layer thickness) and

y+= 10, 22, 40, 97, 190

Channel Flow: $u,-/v = 180 (where _ is the channel half width) and

ylu_./u = 33, 59, ... 180
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In figure 4 the results for the channel alone are plotted including the exceptionally

small value of Yl = 5u/u_.

It appears that for these two wall bounded shear flows, the self similar plot of

/_, is a good description of the measurements. Comparing figures 2 and 4 indicates

as good a 'collapse' as observed for shear free boundary layer. (But remember that

figure 2 is a plot of experimental points in the atmosphere!). Note that the similarity

hypothesis is more accurate for smaller values of y, as expected since the assumption

that the small eddies at y and the large eddies as Yl are uncorrelated, (i.e. VsVL ._ O)

is more valid when Y/Yl is small.

It is particularly surprising that approximately the same curve describes the dis-

tribution of/_ for points both within and well above the viscous sublayer. However

very close to the surface within the sublayer we must expect that, since v c¢ y2 as

y,,_/v --, O, n_ --, (y/yl) _ as y,,_/u _ O.

However the computation of Kim, Moin or Moser (1987) have shown that some

vertical eddying motion exists on a scale even smaller than 5v/u_ (because v is not

exactly proportional to y2). This is quite consistent with the fact that the two point

correlation/_v_, is greater than (y/yl) 2 when ylur/u = 5.

These results show that there is a significant difference in the measured value

of/_,,v between these shear boundary layers (figures 4 and 5a) and the shear-free

boundary layers in figure 2. They show that the effect of shear is to reduce the cor-

relation length of the normal velocity in the normal direction. (But it is important

to note that, the smallest scale of v in a shear flow is in the spanwise or z-direction,

Townsend (1976). So these curves of R_,_, do not give a basis for estimating dissipa-

tion or the dissipation length scale.)

Figure 5b is added to show that if the conventional two point correlation is plotted

against Y/Yl, the points do not tend to zero as Y/Yl ---+ 0 and the curves do not

have any general pattern.

In figure 5c we present the cross correlation of the Reynolds stress R_,v as defined

by (1.6). These curves for different values of (y_/b) show that Ruv is not a universal

function of (Y/Yl) over the whole channel width. However, the three sets of curves

for which Yl is in the log layer, i.e., 30 _ y+ <_ 100 do exhibit a strong degree of

sinlilarity- (recall that the abscissa is being stretched by a factor of 3, and yet the

curves are self similar).

It is interesting to note that the shape of the self similar curves of Ruv is markedly

different to the curves for the normal velocity correlation, R,,v. The correlation is

higher.

In figure 6, we present, the cross correlation for the vertical velocity separated by

a normal and spanwise spacing normalized by the correlation at the same height,

but zero spanwise spacing i.e.,

= )
R,,,(y,ra; yl ) = =

We also plotted the correlation of u and v defined as

= iL (y,r ;y )/hvv(y,o, yl)
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FIGURE 5. Normalized cross correlations of velocities at y and Yl from tur-

bulent plane channel flow (Moin & Moser, 1987) for various values of Yl. (a)
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FIGURE 6. Normalized cross correlations of velocities at y and Yz with separation

in z (r3) from turbulent plane channel flow (Moin & Moser, 1987) for various values

of Yl. (a) v(y, ra),v(yz,O)/v(y,O)v(yl,0), (b) v(y, ra),u(yl,0)/v(y,O)u(yz,O). The

value of a3 is chosen for each curve to be the r3 location at which the curve passes
through 1/e.
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FIGURE 7. Values of a3 as a function of Y/Yl and Yl, (a) as used to scale Rv,

(figure 6a), (b)) as used to scale Rv,_ (figure 6b).

The curves are plotted as functions of r3/a3 for different y and Ya, where as is

defined as the value of r3 where R,,,, = 1/e = 0.36 The results show firstly, the

small variation of the form of the spanwise structure and the negligible variation

of the spanwise scale of the eddies in these boundary layers. Using this particular

correlation emphasizes this point quite nicely. This approximate invariance is found

for values of Yl/6 <__0.8. It is not true for Yl at the centerline, Ya/g _ 1.0.

Secondly, these results show how the scale a3 increases with yl. In Figure 7, we

have plotted a + against y+. It appears that this scale is of the order of 9 wall units

near the wall and then begins to increase when yl+ _> 10. This would be consistent

with the ideas suggested in the introduction. A satisfactory curve fit could be (figure

8)

OU +

a + ,_ (1.4 0--_ + 7)

0.3y + in the log layer.
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This value of a + is of the same order but a little 9rearer than the dissipation length

scale L_ (based on v 2 in the log layer) where

L, - >- O.18y
._-23 / 2

Other results have been computed for Ru,,,R,_. They also show equally strong

channeling of the spanwise structure; though the value of aa for R,_, is about twice

as great as for R,_.

3. Implication and further work

The preliminary results show that even in the inhomogeneous turbulent boundary

layer, the two-point correlation function may have self sinfilar forms. The nature

of these self similar functions can be inferred by using rapid-distortion theory. The

results shows that the effects of shear and of blocking are equally important in

the form of correlation functions for spacing normal to tile wall. But for spanwise

spacing, we have found that the eddy structure is quite different in these shear

flows; this aspect of eddy structure is largely controlled by the shear and perhaps

by small scale structures very close to the wall. So any theory for the turbulent
structure must take both these effects into account.

The results suggest further study

a. Comparison with laboratory and atmospheric measurement.

b. The effects of curvature and pressure gradient should be investigated. We would

still expect to see these self similar two point correlations.

c. Further theoretical calculations should be done using RDT Theory for uniform

shear near a wall.
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d. The two point correlation functions are likely to be self similar for other compo-

nents and in other direction (eg. for the spanwise, z, spacing).
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Ejection mechanisms in the sublayer
of a turbulent channel

By J. JIMENEZ 1, P. MOIN 2,3, It. D. MOSER 3 AND L. R. KEEFE 4

It has long been recognized that the structure of wall bounded turbulence in

boundary layers and channels is three-dimensional (Kline et al., 1967). A generally

accepted picture is that low velocity streaks are ejected from the wall layer and

are responsible for a large fraction of turbulence production. (see e.g., Cantwell,

1981). The mechanism that triggers the initial ejection is, however, not understood,

and there are indications that the processes controlling the behavior of the viscous

sublayer, where these ejections originate, are different from those active in the outer

parts of the boundary layer.

Recently, Jimenez (1987), while studying numerically the behavior of a two.

dimensional channel flow, found a simple mechanism giving rise to spontaneous

ejections of vorticity, and of the associated low momentum fluid, away from the

wall and into the core flow. In that 2-D case, once the vorticity is ejected, it is

stretched into long thin shear layers which periodically release part of their vor-

ticity into the laminar core of the channel, where it is eventually dissipated by

viscosity (figure 1). It should be stressed that tile only vorticity component present

in a 2-D flow is _., and that this process is essentially different from any of the

usually accepted mechanisms involving induction by hairpin vortices, which include

important contributions from w_, and _%. As such, it was not expected that this

complete picture would survive in fully developed three-dimensional channel flows,

but one of our goals during this workshop was to check whether some aspect of it

could still be useful in describing fully turbulent situations.

A particularly appealing possibility was that the same mechanism could con-

tribute to the origin of the ejections in natural channels, especially since it was

shown in Jimenez (1987) that the site of the basic ejection instability for the 2-D

flow is tile viscous sublayer, where it can reasonably be expected to be approx-

imately independent of tile three-dimensional phenomena occurring in the outer

part of natural boundary layers.

The general behavior of the 2-D solution is that of a periodic train of nonlinear

Tollmien-Schlichting (T-S) waves, of the kind described in (Herbert, 1976). This

wave train is characterized by a succession of strong vorticity peaks at the wall,

separated by regions of weaker, or even negative vorticity. This alternation of strong

and weak vorticity generates local updrafts, corresponding to stagnation points in

1 Universidad Politecnica, Madrid, and UAM-IBM Scientific Center, Spain.

2 Stanford University

3 NASA Ames

4 Center for Turbulence Research
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FIGURE 1. Two dimensional ejection in the boundary layer of a 2-D channel.

The periodic ejections from the train of nonlinear Tolhnien- Schlichting waves are

equivalent to a limit cycle of the system (from Jimenez, 1987). Flow runs from left

to right, and time, from top to bottom. Axes move with primary T-S wave. Each

frames spans from the lower wall to the channel centerline.

a frame of reference moving with the wave train, which tend to draw vorticity away

from the wall, producing the protruding shear layers (see figure 2). The stability of

this situation depends on the Reynolds number. Above Re = Uh/u = 5500, and for

a wave number a = 1.0, the uniform wave train becomes unstable and bifurcates

into a limit cycle, giving rise to the periodic ejections described above. At a higher

Re = 9100, it bifurcates again into more complicated dynamical behavior (a torus).

Here, U refers to the center-line velocity of a parabolic profile with the same mass

flux, and h, to the channel half width. Throughout this paper we will use this
non-dimensionalization.

Our first step was to check the accuracy of the original 2-D calculations. To do

that, some initial conditions from Jimenez (1987) were used with a 2-D version of

the channel flow described in (Kim, Moin & Moser, 1987). Although both numerical

codes are spectral, they are essentially independent, and differ in many important
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FIGURE 2. The basic mechanism for the two dimensional ejection of vorticity is

the creation of an updraft between a pair of spanwise vortices of opposite sign (or

unequal magnitude) in the sublayer.

details, including different dependent variables used in the integration. Neverthe-

less, the results of both codes did check in detail. The comparisons included a limit

cycle (Re = 7000), and a torus (Re = 9200). In both cases, not only the qualitative

nature of the results from both codes were similar, but the quantitative values of

the wall stress, and of its oscillations as a result of the instability, agreed to within

plotting accuracy.

The next step was to investigate the degree of similarity between nonlinear T-S

waves and thin layers of z-vorticity present in natural channel flows. For that,

we used a short time series of flow fields extracted from the numerical simulation

described in (Kim, Moin & Moser, 1987). This is a fully resolved numerical simu-

lation, Re = 4200, of a channel which is defined as 47rh periodic in the z direction,

and as 4rrh/3 periodic in tile z direction. The Reynolds number is based on the

centerline velocity of a parabolic profile with the same mass flux. It was shown in

thai. reference that its statistical properties are in good agreement with those of

experimental flows, and we will consider it here as a "natural" turbulent channel.

The first surprising observation is that thin layers of z-vorticity are indeed a very

common feature of this channel flow, and that they protrude from the wall in a

manner which is strongly reminiscent of the features observed in the 2-D calculations

(figure 3). To our knowledge, this is a new observation, although Kim (1987) had

described the formation of thin layers of high vorticity magnitude as part of the

evolution of an isolated "hairpin" vortex in the neighborhood of a channel wall.

There are some important differences between the structures observed in the

channel and those in the 2-D calculations. To begin with, the "wavelength" seems

to be shorter, with an average longitudinal separation between consecutive features

of the order of 1 to 3h. (200-600 wall units), while the 2-D nonlinear T-S waves

can only exist, as equilibrium solutions, for wavelengths in a range between 4b and

6.5h. Also, the channel layers penetrate less into the core of the channel, appearing

to level off at a distance of 0.3h. (35 wall units) away from the wall, while the 2-D
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FIGURE 3. Lateral view of a train of projecting shear layers of z-vorticity in a

natural, fully developed three dimensional channel flow. Note the similarity to the

structures in the 2-D calculations. Dotted lines correspond to _o, = -1,0; dashed:

_o_ = 1,2; solid: wz = 3 to 17. Average vorticity at the wall is w_ = 7.67.
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FIGURE 4. Distribution of spots of high spanwise vorticity in the viscous sublayer

(y+ = 6). These spots are the roots of the structures in figure 3. The line marked

"A" corresponds to the position of the cross section in figure 3.

solutions extend all the way to the channel center line. On the other hand, there is

some evidence, in the natural flow, of weaker layers that do extend deeper into the

core.

The main difference, however, is that the shear layers in the natural channel are

three dimensional structures, with a spanwise extent of no more than 0.2h, or about

35 wall units, at y+ = 6 (and about twice as much at the wall). They appear to

be rooted at the wall in elliptical "hot" spots in which the spanwise vorticity is at

least 25% higher than its average wall value, and to extend into the channel with a

characteristic S-shape , and an average ejection angle of a few degrees. These spots

can be used to detect and count the protruding layers and to follow their motion

(figure 4). They appear to move with a convection velocity of 60% of the center line

velocity, or 0.47U, where U refers to the centerline velocity of the laminar profile

at the same mt_ss flux. This last number is in surprisingly good agreement with the

convection velocity of the 2-D nonlinear waves. Although the significance of this
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FIGURE 5. Three dimensional representation of z-vorticity structures extending

away from the viscous sublayer. The vorticity iso-surface represented is approxi-

mately 25% higher than the average wall vorticity, and the first tick mark in the

y-axis corresponds to y+ = 17.

agreement is not clear, this convection velocity is quite high, showing that the spots

are linked to some structure extending outside the viscous sublayer.

In fact, when these hot spots are followed into the flow in the form of three di-

mensional iso-surfaces of z-vorticity, they form a "forest" of leaning curving "necks"

that covers much of the wall (figure 5). It is possible to follow the evolution of these

structures as they move in time, and some of them were followed for fairly long

periods, long enough for the structure to move several channel half widths. In the

course of their life they reproduce, giving origin to new structures, and we were able

to observe several of these reproduction processes. An example is given in figure

6, where time runs from top to bottom. In the first frame of this time sequence

a structure has began to stretch, producing a small vorticity blob at its top end.

In the next frame the blob has grown considerably, and a small patch of strong

vorticity appears at the wall. Finally the vortex at the walls grows out into the

boundary layer and fuses with the tip of the stretching layer. At this moment, the

tip separates from its parent structure, forming what appears to be the "embryo"

of a new spot. The last frame shows both spots as essentially independent units.

A closer examination of the vorticity field shows that there is a region of con-

centrated z-vorticity of opposite sign (negative), underneath the top part of the

structure. These regions of reverse vorticity are visible in the lateral view of this

same structure in figure 3. The whole reproduction process is strikingly reminiscent

of the instability process for 2-D linear Tollmien-Schlichting waves (see Betchov &

Criminale, 1967). Basically, vorticity is created at the wall and diffuses into the

main flow through viscosity. In a frame of reference moving with the structure, the

fluid below the critical layer is moving backwards, while that on top moves forward.
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FIGURE 6. Splitting process of a structure to create a new one. See text for

explanation. Time difference between frames is approximately 6 wall units (t,/u_).
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As a result, as the vorticity diffuses away from the wall, it takes a backwards point-

ing "V" shape that is visible in figure 3. Eventually, the positive vorticity in the

main structure (above the critical layer) induces a negative vortex near the wall,

to accommodate the no slip condition. This vorticity of opposite sign is convected

backwards by the flow, as it diffuses outward, and forms a negative vortex layer un-

derneath the original positive one. This new layer eventually overcomes the effect

on the wall of the original structure, and begins to induce a new positive vortex.

The moment that a strong vortex pair in formed in this fashion, underneath the

original structure, an updraft is created that carries part of the positive and neg-

ative vorticity into the upper part of the structure. The negative vorticity in the

rear cuts the connection between the head and the base of old structure (through

viscous annihilation), while the positive vorticity connects with the head of the

old structure to form a new one (see figure 7). Note that the mechanism invoked

here, for the production of the updraft, is the same one proposed in figure 2 for the

ejection of shear layers into the flow.

As noted previously, this is the mechanism responsible for the linear 2-D T-S

waves, and it seems to explain approximately the behavior of z-vorticity in the

splitting mechanism in figure 6. This suggests that the mechanism for the generation

of ejections in the sublayer may be essentially two dimensional, although there are

undoubtedly some three dimensional effects present, as shown by the fact that the

structures do not spread laterally into spanwise bands. In fact a map of y-vorticity

in the sublayer shows long active streaks, delimiting quiescent "corridors" between

them (figure 8). The hot spots, and their associated shear layers seem to ride those

corridors, as a necklace of beads, x-vorticity is also present in the sublayer, but

it. seems to be weaker, and harder to correlate with the structures studied here.

Also, there is little doubt that, as the shear layers are ejected further into the main

stream, longitudinal vorticity and three dimensional effects are important in their
evolution.

The general picture of the sublayer suggested by this simplified model is a col-

lection of patches of the high vorticity in the wall layer, which are lifted into little

"ramps" corresponding to the shear layers described in this paper. Since the vortex

lines cannot end in the nfiddle of the flow, these ramps are linked to the wall by

"sidewalls" which correspond to the regions of high V-vorticity observed in figure 8.

It is easy to see that, if the ramps are constrained to be in between the streaks, the

picture becomes something like the one in figure 9, and the induced longitudinal

velocity fluctuations in the sublayer should consist of high velocity narrow streaks,

bounding wider bands of lower velocity. This is precisely the pattern observed ill

experiments.

The remaining question is whether the three dimensional structure representing

one of the protruding ramps can be studied in isolation. Numerical simulation

provides a unique opportunity to attempt this, since the behavior of structures in

natural channels is complicated by the interactions among the large number of them

present in the flow, and since it is obviously difficult to isolate a single structure in

a physical experiment. The numerical equivalent of isolating a single structure is
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FIGURE 7. Tentative mechanism for the splitting process of a structure. This

2-D mechanism corresponds roughly to the instability mechanism for Tollmien-

Schlichting waves.
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FIGURE 8. Streamwise streak pattern of 9-vorticity in the sublayer. Conditions

are identical to those of figure 4, and careful comparison with that figure shows

that the vorticity spots reside in the relatively quiescent corridors between the high

velocity streaks.

FIGURE 9. A model for the sublayer structures. The raised structures are lifted

portions of wall vorticity, and are "supported" by vorticity sidewalls that are the

origin of the 9-vorticity streaks.

to use a computational box whose z-z extent is small enough to contain only one,

or at most a few, structures. This was attempted in the course of the workshop.

Running at Re = 7000, we first tried computing a channel on a periodic box of

2_rh × 2_rh (about 1800 × 1800 wall units). The initial conditions were extracted

from the 2-D limit cycle solution, with the addition of a small 3-D perturbation.

As expected, the flow became quickly three-dimensional, and the wall shear stress

grew from the low value corresponding to the 2-D (Herbert) solution (w. = 3),

to that for a fully developed turbulent channel (_o: = 12). This solution was no(.

followed for a long time, since it was not any easier to understand than any of the

previously available flow fields. The remaining numerical experiments were carried

out using computational boxes whose spanwise extent was 7rh/8, corresponding

to approximately 113 wall units. Since the computational domain is periodic in

both z and z, this corresponds to a periodic array of structures with a spanwise

spacing close to the one found in natural flows. We tried different streamwise



46 Jirnenez, Moin, Moser and Keefe

¥

..£:.i;: ............................................ .:::7;:;. ...................................

........................................... ". _:-;:..._..::,.

.................................................._;7-_ ............................................................
' .a ....... ." ,_'3 ,;": ..... :,:: ................. ; /:.. _.TS ......
;'_'- _ " " ._'_" ;_'_'_;_ ..... _"" "L'L-" _.::" . "', _ 7,'" ,;v',f%'4_:-=:
:%2 Y.- " " _ .-i'_._"._'_;a " ,::._.'2F_ -_-Z-----_: : .....:;-L " .¢"> _._,.'.'"":'._

•.:,.._.;-'"_....._-'-._...:-:"..";,"..,:.>'.':._-.'.'::.'7..:_:'....... :-z_:Y':;:.-'.:.".-.:,-_".":,> -"

FIGURE 10. z-vorticity field of a 3-D narrow channel, as described in the text.

Note that the upper wall, at. the top of the figure, is essentially two-dimensional,

and smooth, while the lower one remains three-dimensional and "turbulent".

periods, none of which was completely successful. The most desirable boxes were

the very short ones, that could be expected to contain a single structure (actually

a doubly periodic array of them). However, attempts to introduce perturbations

in boxes with streamwise periods of rrh/8, and 27rh/5 quickly decayed to laminar

solutions. The most interesting box, up to now, has been one with an z-extent of

2rrh, and a spanwise one of rch/8. This flow cannot decay to lanfinar, since it is

linearly unstable to two dimensional perturbations of this wavelength. Apparently,

however, thai domain is neither sufficiently stable to decay to a 2-D solution, nor

sufficiently unstable to maintain a fully 3-D turbulent one. The result is a non-

symmetric channel in which one wall (the top one in our case) sustains a roughly

2-D flow, while the other one has a turbulent, 3-D boundary layer, presumably

forced by the 2-D solution at the top wall (see figure 10). This boundary layer

contains ejection structures similar to those in 3-D natural layers, and which appear

to be fairly typical, but the average shear stress at the wall falls in between the

values characteristic of 2-D and 3-D solutions. At each particular moment, the

computationa] box contains 3 or 4 sublayer structures, which are still too many for

a simple model of the layer, but constitute, at this moment, the smallest system

available for its study. Further experiments with boxes of different sizes are still in

progress.

Summary

In summary, we present here a possible model for the inception of vorticity ejec-

tions in the viscous sublayer of a turbulent rectangular channel. We have shown

that this part of the flow is dominated by protruding strong shear layers of z-

vorticity, and have proposed a mechanism for their maintenance and reproduction

which is essentially equivalent to that responsible for the instability of 2-D Tollmien-

Schlichting waves. The efforts to isolate computationally a single structure for its

study have failed up to now, since it appears that single structures decay in the ab-

sence of external forcing, but a convenient computational model has been identified

in the form of a long and narrow periodic computational box containing at each

GF:CI:TAL P.XGE IS

OF IGOR QUALrl_



Ejection mechanisms in the sublayer 47

moment only a few structures. Further work in the identification of better reduced

systems is in progress.
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Overview of the K-space Group Projects

The projects of the K-space group consisted of six independent lines of inquiry

with a common theme of the interaction among scales of motion in turbulence. The

studies were almost entirely limited to homogeneous turbulence. In the following

paragraphs I will give a brief overview of the six projects.

The invited participants were:

Jean-Pierre Bertoglio (Ecole Centrale de Lyon)

Julian Hunt (University of Cambridge)

Paolo Orlandi (University of Rome)

Roland Schiestel (Institut de Mecanique Statistique de la Turbulence)

Akira Yoshizawa (University of Tokyo)

The local participants were:

Jeffrey Buell (NASA Ames)

Gary Coleman (Stanford University)

Joel Ferziger (Stanford University)

Robert Rogallo (NASA Ames)

Alan Wray (NASA Ames)

Bertoglio wishes to test the accuracy of the assumptions within the EDQNM

closure at a deeper level than has been previously done. An important step in

the closure is the estimation of a Lagrangian time scale which is assumed to be a

functional of E(k). Bertoglio judges several candidate functionals by the degree to

which they collapse the two-time velocity auto-correlations in direct simulations of

isotropic turbulence. This approach appears very promising, and good collapse has

been achieved at the higher wave numbers. This work is the continuation of a joint

effort by Bertoglio, co-workers in France, and Squires and Ferziger at Stanford.

The EDQNM theory is purely statistical in nature, whereas many important tur-

bulence problems are dominated by the presence of persistent coherent structures.

Bertoglio's second goal is to determine how well EDQNM copes with such struc-

tures. An experimental program has been started in France using propellers to

inject known coherent structures into a turbulent flow, and to conduct a parallel

numerical simulation. Comparisons between experiment, simulation, and theory

for this flow should illuminate any difficulties that the statistical theory has with

imbedded coherency. During the workshop Bertoglio attempted to define initial

conditions for such a sinmlation. The energy in the simulation peaked at the blade-

passing frequency of the propellers while that in the experiment peaked at their

rotation frequency. It should be a simple matter to solve that mystery, but there

was simply not enough time during the workshop to do so.

Orlandi's project concerns the use of EDQNM as a subgrid (or supergrid) model

for a large-eddy simulation. At a minimum, such models must accurately account

for the energy transfer between the computationaly resolved and unresolved scales.

• ,., _, , ' 4 •, ,•- • , ,_ -
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In EDQNM, the net transfer into wave number k is calculated as the integral over

interacting triads (k,p,q) of a functional of E(k), E(p), and E(q). Orlandi has

demonstrated that EDQNM accurately produces the transfer measured in a direct

simulation of isotropic turbulence both when the full set of interactions is consid-

ered, and also when a subset (truncated spectrum) of interactions is considered.

Then, if the spectrum of the unresolved scales can be estimated, EDQNM can ac-

count for their contribution to the energy transfer. In the simulation however, the

effect of the unresolved scales must appear as additional terms in the momentum

equations. The subgrid term is usually modeled by a gradient diffusion form with

an eddy viscosity determined from the subgrid transfer (see the works of Kraichnan,

Chollet, and Lesieur) . The supergrid term is presumably some sort of forcing but

a gradient diffusion form, with negative eddy viscosity, does not seem physically

correct. Another possibility is the application of a mean strain that is uniform in

space but random in time. The art of driving simulations at the large scales, as was

done by Hunt et al above, is currently not well understood ( see the works of Siggia,

Kerr, Pope, etc. ). Orlandi also attempted to extend the EDQNM closure to ho-

mogeneous shear, but encountered numerical accuracy problems in the calculation

of the five-dimensional integrals required.

While the EDQNM model appears to be reasonably accurate and tractable in

isotropic turbulence, in anisotropic flows it is far less tractable, requires additional

assumptions, and is much more expensive to compute. Because of this, the theory

has not received much attention for anisotropic flows. These are however very

important in the context of subgrid models for LES calculations because as the grid

resolution increases, the subgrid contribution approaches homogeneity much more

rapidly than it approaches isotropy. Coleman and Ferziger consider the possibility of

a Galerkin approach to simplify the EDQNM calculation. The angular distribution

of velocity correlations over spherical shells (which are, in the proper variables,

uniform in isotropic flow) would be represented by the weighted sum of a small

number of smooth basis functions. Coleman and Ferziger attempted to estimate

the number of basis functions required by inspecting the angular distribution of

the Reynolds stress spectrum tensor in a direct simulation of homogeneous sheared

turbulence. The distributions were quite smooth and the authors speculated that

they could be represented by a sum of two or three functions. There appear to

be several important issues that were not covered in a general way: the choice of

the coordinate system and the choice of the dependent variables. In any expansion

technique the choice of variables, both dependent and independent, is crucial. In this

case some clues might be extracted from rapid-distortion theory, from consideration

of the principal axes of the stress and mean strain rate tensors, and from the manner

in which the mean flow gradient enters the EDQNM equations.

The project of Hunt, Buell, and Wray concerns the relation between space and

time spectra (or correlations), and their dependence on the reference frame ( Eule-

rian or Lagrangian ). In particular, they wanted to determine how the advection of

small-weak scales by large-strong ones influences the Eulerian time spectra at high

frequency and wave number. The results support the assertion of Tennekes that
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such advection dominates the frequency spectrum at high frequency, but indicates

that Hunt's earlier proposal relating the time-space spectrum to the space spectrum

was over simplified. During the project Hunt reworked the analysis using a more

realistic p.d.f, for the advecting velocity and derived a simple relation which agrees

well with the simulation. Some anomalies were observed in the computed data;

these appear to be a consequence of the small statistical sample of forced modes,

the small range of spatial scales that could be retained, and the low Reynolds num-

ber that was required for adequate numerical resolution.

In Schiestel's model, the equation for the Reynolds stress spectrum tensor is

integrated, in wave number space, over spherical shells rather than over the entire

space as done in classical one-point Reynolds stress formulations. As a result, some

scale information is retained. Within each shell, one must model the same quantities

as in classical one-point closures ( pressure-strain, dissipation, etc.) and in addition,

model transfers between shells. These transfers are globally conservative and do not

appear in the one-point approaches. Schiestel's goal during the summer program

was to compare the models for these terms with data from direct simulations. He

hoped to determine the accuracy of the models he is currently using, and to get

some clues to aid in their improvement. As one would expect, some of the terms

were modeled rather well while others were not, and, unfortunately, there was not

enough time to consider improvements. The statistics taken from the simulations

were rather noisy at the larger scales because of the small sample and sometimes

biased at the small scales due to mesh anisotropy. But they are simply not available

elsewhere, and appear to be precisely what Schiestel needs.

Over the past several years, Yoshizawa has worked out a formal two-scale expan-

sion of the Navier-Stokes equations in which the interaction between the scales is

weak. The scales are disparate in both space and time, and are separated by for-

mally averaging over an intermediate scale at which Taylor series expansion of the

large scales is assumed to be valid and averages of the small scales are assumed to be

statistically converged. The interaction terms in general depend upon deterministic

features of the large-scale field (its derivatives) and statistical features of the small-

scale field (local correlations). The disparity of the spatial scales leads , at small

scale, to homogeneous turbulence at lowest order, and the time scale disparity leads

to its isotropy. The required statistics of the small scales are in turn modeled by the

DIA formalism. At higher order the small scales become anisotropic. Within this

framework (TSDIA) it is possible to find the form (formally, the asymptotic expan-

sion) of terms that must be modeled in one-point closures, for example the diffusion

of kinetic energy. A model is then postulated by replacing the gauge functions in

the expansion with "model constants". It was Yoshizawa's hope to be able to test

several of these models and to estimate the contribution of the higher-order terms,

using simulation data to determine the constants. Unfortunately some model terms

could not be computed because the required statistics had not been extracted from

the database prior to the summer program and during the program no one was

available to do so. In addition, the data that was available was not really adequate

for the simultaneous determination of several constants. The sample was too small,
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as was the Reynolds number. Yoshizawa was then forced to omit most of the new

terms suggested by TSDIA. When this was done the models fit the data well ( with

one notable exception ) with constants close to the values previously predicted. For

example, the fact that rotation reduces the dissipation rate was correctly predicted.

The exception was the case of turbulent diffusion in homogeneous shear of a pas-

sive scalar having a mean gradient in the stream direction. In this case the mean

gradient itself changes with time but was in fact held fixed in the simulation used

by Yoshizawa. A later simulation treated the case of changing mean gradient but

it is not clear which case is appropriate for testing Yoshizawa's model.

Summary

All of the projects are, in my opinion, worthwhile and feasible, and will hopefully

be pursued further. The progress made during the summer session was limited

by the number of local participants available to interact directly with the com-

puters. The group benefited greatly from discussions with Robert Kraichnan and

Evgeny Novikov, and several projects were directly influenced by their suggestions.

We at Ames benefited from each of these projects because in every case we were

exposed to areas of research and ideas that we had not pursued in-house before.

Bob Rogallo
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EDQNM closure: "A homogeneous
simulation to support it", "A

quasi-homogeneous simulation to disprove it"

By J.P. Bertoglio 1, K. Squires 2, and J.H. Ferziger 2

It is known that two-point closures are useful tools for understanding and predicting

turbulence. Among the various closures, the Eddy Damped Quasi-Normal Marko-

vian (EDQNM) approach is one of the simplest and, at the same time, most useful.

Nowadays, direct numerical simulations (DNS) can provide information that can be

used to test the validity of two-point theories. It is the purpose of the present work

to use DNS to validate, or improve upon, EDQNM.

In the first part of this work ("a homogeneous simulation to support it") we se-

lected a case for which EDQNM is known to give satisfactory results: homogeneous

isotropic turbulence. We then evaluated quantities which may be used to test the

assumptions of two-point closure approximations: spectral Lagrangian time scales.

Our goal is to make a careful and refined study to validate (and possibly improve)

the EDQNM theory.

The aim of the second part of the work ( "a quasi homogeneous simulation to dis-

prove it") is, on the contrary, a test of EDQNM in a much more difficult situation.

Our purpose is to build a reference case for which EDQNM is likely to give poor

results. We present an attempt to generate a quasi-homogeneous turbulent field

containing "organized" structures, by artificially injecting them in the initial con-

ditions. The results of direct simulations using such initial conditions are expected

to provide a challenge for EDQNM since this kind of field is simple enough to al-

low comparisons with two-point theories, but at the same time contains "coherent"

structures which cannot be expected to be accurately accounted for by closures

based on expansions about Gaussianity.

1. Lagrangian spectral times in isotropic turbulence

1.I The Assumptions of EDQNM

In the EDQNM theory the growth of the third order moments is limited by the

introduction of a damping term in the rate equation for the triple correlations. The

damping coefficient p(k, p, q) is essentially an inverse time scale for the decay of the

triple correlation among the three wave-vectors of a triad. It is generally assumed

that tt(k, p, q) is the sum of the inverse time scales for the individual wavenumbers:

p(k,p,q) + r,(k2 + p2 + q2) = _(k) + 7/(p)+ r/(q)

1 Ecole Centrale de Lyon

2 Stanford University
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and r/(k) is specified phenomenologically.

For flows at Reynolds numbers sufficiently high to contain an inertial subrange,

the damping coefficient must have the form (Orszag 1970)

1 2

_(k) = a e_ks

The form proposed by Pouquet et a1(1975) for an arbitrary energy spectrum:

f0 k 2 _trl(k ) = )t[ p E(p)dp]2 + vk 2

is more commonly used. The value of constant )_ is generally taken to be 0.355.

According to this expression the time scale at wavenumber k depends only on

wavenumbers smaller than k (i.e. only the large eddies influence the damping).

There is however no reason, on physical grounds, to assume that the effect of the

smaller scales can be neglected. Indeed, in order to devise a two-point closure com-

patible with the RNG approach of Yakhot and Orszag, Kraichnan (1987) recently

introduced a model in which it is assumed that only the small scales affect the

damping. In fact, neither type of expression can be completely correct, and dur-

ing his stay at the Center for Turbulence Research (CTR) 1987 summer program

Kraichnan suggested the following possibility of building a time scale that depends

on all scales:

rl(k ) = A,[ p2E(p)dp]½ + (v + v>(k))k 2

where v> (k) is given by :

fk E(p)dp= ,7(k) +

where ,Xa and Sb are constants. It can be shown that these two new constants must

satisfy the following relation:

)t, = )_ - 2(1 - log2)_ -_

in order that the new form reduces to the old one in the case of an inertial range.

During the CTR Summer Program, we tested the new form for the damping by

introducing it into the EDQNM computation code written by Orlandi. We found

no significant differences from the results obtained using the classical form, as long

as )_a/)_ remains larger than 0.5. We noticed a small effect on the skewness, (see

figure 1); the other quantities remain unaffected.
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FIGURE 1. Evolution of the skewness in time. Comparison of EDQNM results

obtained with different formulations for the damping. (a) damping given by Pouquet

et al (1975); (b) damping suggested by Kraichnan (with)_a/_ : .5).

1.2 Evaluation of 7l(k ) using direct numerical simulation.

In order to test the expression for r/(k) used in EDQNM against actual turbulence

time scales, we have to deduce a spectral time scale from the simulation results.

Comparisons between EDQNM and the Direct Interaction Approximation suggest

evaluating the time scale using two-time correlations of the velocity field. The

proper time scale must be invariant under an arbitrary Galilean transformation

since the triple correlations must not be affected by convective effects. Tile time

scale must therefore be a Lagrangian time scale derived from Lagrangian two-time

correlations, as suggested by LHDIA. For practical reasons, we used the two-time

correlations introduced by Kaneda (1981):

Rij(x,t'lt;x',t'lt') =

where Ui(X, t'lt) is the velocity at time t of the fluid particle whose trajectory passes

through x at time t'. One could also use the two-time correlations defined by

Kraichnan in the LHDIA or ALHDIA theories, or work with the response tensor,

but the evaluation of Kaneda's correlations is simpler.

Spectral information is obtained by Fourier transforming with respect to the

initial position of the particles.

To deduce the Lagrangian correlations from the results of a DNS, one has to
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follow particle trajectories. This is done using Squires' code, which was developed

for the study of particle dispersion.

1.3 Results

Two direct numerical simulations of homogeneous isotropic turbulence were used.

Both used Rogallo's code. In the first case, a 64x64x64 grid was used. In the second,

a 128x128x128 grid was introduced in order to increase the Reynolds number.

We present here only a limited number of results. For a more detailed study see

the paper by Lee, Squires, Bertoglio, and Ferziger (1987). A study preliminary to

this work was performed in Lyon using Large Eddy Simulation on a 16x16x16 grid.

In the DNS, it would have been desirable to place particles at each point of the

computational grid, but doing so would have increased the cost of the computation

prohibitively. The number of markers is therefore much smaller than the number

of grid points. Marker placements were of two types. First, to ensure accurate

large scale statistics, markers were placed on a 16x16x16 equally spaced grid. This

provides a set of widely spaced particles. To obtain data on the small scales, a

second set, consisting of 8x8 lines of 64 particles was used.

In figure 2a, the Lagrangian correlations obtained from the 128x128x128 run

are given as functions of the dimensional separation time t - t'. As expected, the

correlations corresponding to large wavenumbers decrease rapidly.

The correlations can also be plotted as functions of the time normalized by the

candidate time scale; an accurate time scale should collapse the results to a single

curve, figure 2b shows that, when the classical time scale is used, the collapse is

good at high wavenumbers but not as good at low wavenumbers. When Kraich-

nan's expression is used (with k,a = A/2), the collapse is slightly improved at low

wavenumbers, and remains acceptable at high wavenumbers (figure 2c).

1._ Problems and futuT_c orientations

The major problem encountered is tim lack of sufficient sample at high wavenum-

bers. The number of particles used (8x8x64) was probably not large enough to allow

conclusive results concerning the highest wavenumbers in the simulation.

In the comparison between Lagrangian and Eulerian correlations, another prob-

lem appears. As expected, for short times and at high k, the Eulerian correlation

decreases faster than the Lagrangian one; however, for long times, the trend appears

to be reversed. In fact , for large values of the separation time, the significance of

Fourier transforming with respect to the initial positions of the markers must be

questioned. One could try to use another definition for the spectral time scale in this

case. However, we believe that information deduced from the small time behavior

is sufficient for the purposes of our study.

It would be interesting to extend the present study to anisotropic flows, as almost

no information is available about the effects of mean velocity gradients or anisotropy

on the damping. The easiest anisotropic case to investigate would be turbulence

submitted to uniform solid body rotation since, in this case, steady coordinates (in

the rotating frame) can be used. Due to the lack of time, we could not investigate

this case during the summer program. It should be the subject of future work.
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tion at different values of the wavenumber. (a) un-normalized time separation, (b)

time separation normalized using Pouquet's formula, (c) time separation normalized

using Kraichnan's formula.
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In the case of isotropic fields, interest in studying the damping term is quite lim-

ited, since it is known that the existing formulations lead to satisfactory predictions

of the decay of isotropic turbulence. This is, to a certain extent, true, (and is the

reason why our goal is the study of anisotropic turbulence). However we believe

that, even though limited to isotropic turbulence, the results of the present study

are valuable. In the study of homogeneous isotropic turbulence containing a gap or

a peak in the spectrum, for example, the accuracy of the expression for the damping

is of greater importance. Since the choice of the damping term has an important

effect on the "localness" of the triadic interaction in k space, a better expression

for r/ could provide interesting information concerning localized interactions and,

possibly, insight about the effect of the presence of coherent structures on the en-

ergy cascade (see Kraichnan, 1987). Furthermore, we believe that, in large-eddy

simulation, the influence of the subgrid terms on the Lagrangian time scales should

be investigated.

2. A quasi-homogeneous field containing "organized" structures

2._ Aim of the study and initial conditions.

The first part of tile work was devoted to the study of a case in which EDQNM

is known to perform well: isotropic turbulence. The aim of the second part is

significantly different. It consists of an attempt to simulate a case which, although

simple enough to be handled by closures with reasonable computation times, is

likely to provide a severe test of EDQNM.

Our goal is to get insight into the ability of two-point closures to account for

situations in which coherent structures are present. How are the predictions of

EDQNM affected by the presence of organized eddies?

The existence of coherent structures in wall bounded flows is well known. Wall

bounded flows would, however, require a large amount of computational effort to be

predicted by EDQNM, and at least at first, simpler situations have to be studied.

The basic idea of the present work is therefore to artificially inject coherent struc-

tures into a "quasi-homogeneous" turbulent field (quasi-homogeneous meaning pe-

riodic rather than homogeneous).

During the summer program we tried to define initial conditions for a simulation

of a flow containing "coherent" structures in a periodic cubic box. The results of

such a simulation could provide reference data to test EDQNM.

In an attempt to create such a turbulent field, an experiment has been devised in

Lyon. This experiment consists of generating organized structures in grid turbulence

by using a grid equipped with small rotating propellers. One hundred counter-

rotating propellers are used in this experiment (one at each node of the grid); see

figure 3. The results (see Michard et al, 1986) display interesting behavior, in

particular, a spike appears in the spectrum; see figure 4.

Large Eddy Simulations on 16x16x16 grids, run in Lyon, using initial conditions

containing four vortices embedded in a random field, show that some experimental

tendencies can be predicted, and, to a certain extent, understood (for example,

the existence of a periodic distribution of anisotropy). However, due to the lack
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FIGURE 3. Grid equipped with propellers (Michard et a1,1986). 

Hz 

FIGURE 4. Experinient.al one-dimensional energy spect,rum of Michard et a1 (1986). 

of resolution of this coarse grid, it has not been possible to inject a peak in the 
spectrum in the flow direction. 

The work done at CTR consists in building an initial field that contains such a 
peak. We used a 64x64~64 mesh. A few simulation runs were started to test the 
initial field. After several attempts, it was decided to define the initial conditions 
in terms of the vorticity field. In the 64x64~64 box, four vortex-containing cells, 
corresponding to the wakes of four propellers, were defined. In each cell three 
vortices are introduced, centered on helical lines corresponding to the wakes of the 
three blades of each propeller. In order to ensure zero circulation in each cell, 
another vortex was introduced on the centerline. A representation of this initial 
field is given in figure 5. 

This field was embedded in a random fluctuating field. For this random field, we 
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FIGURE 5 .  Representation of the initial “coherent structures” used in the simu- 
lation. These are t,he idealized wakes of the counter-rotating propellers shown in 
figure 3. 

FIGURE 6. 
averaged over the entire 21 - 23 space). 

Initial one dimensional spectra (vortex field + isot,ropic turbulence, 
The mean flow is in the 22 direction. 

Ell,  - - - -  E227 - - E 3 3 *  

used the one created by Lee & Reynolds (1985) with N = 64, and Re = 51.13. 
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The initial spectrum, in the k2 direction, is given in figure 6. A small peak

appears at the wavenumber corresponding to the blade passing frequency.

_._ Results and directions for future work.

The peak in figure 6 is relatively weak, although the energy contained in the

vorticity field is not small compared to the total energy of the field. However, it

must be pointed out that the plotted spectrum is an average over the X,Z plane,

and one should investigate the behavior of the one-dimensional spectra obtained at

a given point in the X,Z plane.

It is worth noting that the peak appears at the blade passing frequency (due to

the construction of the initial conditions) whereas the experimental spike is found at

the rotation frequency of the propellers. During the simulation, the computed peak

evolved only slightly and no subharmonic spike appeared at the rotation frequency.

The simulations were, however, limited to one hundred time steps due to time

constraints; longer runs are necessary to see the expected behavior.

Another experimental feature is that there is an axisymmetric contraction down-

stream of the grid. This axisymmetric contraction was introduced to amplify the

intensity of the peak. Without it, the peak would die immediately; in fact, the am-

plification was much stronger than expected. The axisymmetric contraction should

probably be included in the simulation. It is hoped that this work will be completed

in the near future. It could provide a challenge for EDQNM, as preliminary studies

show that the experimental decay of the peak is overpredicted by the closure. The

existence of a reference field deduced from the simulation would be highly valu-

able since precise analysis of the mechanism occurring in tile experiment is hard to

deduce from the measured quantities.
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By P. Orlandi 1

1. Introduction

The advantage of two-point closure models over one-point closure models is that

they retain one of the most important turbulence characteristics, the energy transfer

mechanism among eddies of different sizes. These models require closure hypotheses

on the higher order terms. Among the different models derived by the direct-

interaction approximation, DIA, of Kraichnan the simplest one is the eddy-damped

quasi-normal Markovianized, EDQNM, theory of Orszag (1970). It requires a very

simple numerical scheme to solve the so-called triadic integral. This closure is based

on the quasi-normal approximation in the equation for the third-order cumulants

where fourth-order terms are replaced by products of second order terms. The

approximation gives an unrealistic increase of the third order cumulant and leads

to negative energies. The introduction of an eddy damping term eliminates that

unphysical effect.

2. Isotropic Turbulence

When a particular transformation (Crocco & Orlandi, 1985) for the wave numbers

is introduced, the EDQNM expression of the energy transfer term is

1f01 /l+aT(k)= _ dfl dT[kS_(k,flk,Tk)+( )3_(k,k/fl, Tk/fl)] (1)
.]1-_

where the integration is to be performed only in a triangle in the (fl,7) plane.

_(k,p,q) is given by

rE(p) E(k) E(q)

E(k'p'q)=kZpqB(k'p'q)D(k'p'q)[ p-2 k 2 ] q2 (2)

where B(k,p, q) is a geometrical factor and D(k,p, q) is the relaxation frequency

that results from the Markovianization of a certain integral:

1- e -['l( k)+n(p)+rt(q)lt

D(k,p,q) = rl(k ) + rl(p ) + rl(q )

The damping function r/(k) completes the EDQNM closure and the expression

generally adopted is
1

= ,,k + p E(p)dp)

1 University of Rome
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Comparisons between EDQNM and direct simulation, DS, are possible only at

very low Reynolds numbers. In the past these comparisons were limited to the evo-

lution in time of globally averaged quantities such as turbulent energy , dissipation

and skewness. In the first part of the CTR summer program a detailed comparison

of the energy transfer between scales ill a DS and the transfer given by EDQNM

has been made. Only the accurate prediction of the energy transfer distribution is

sufficient to demonstrate that the EDQNM closure describes correctly the complex

mechanism of energy transfer among different scales. An even better check of the

closure would be obtained by comparison of the detailed interaction distribution

_(k,p,q) in the (fl,7) plane. This has been done by Wray, but the evaluation of

E(k,p, q) within a DS requires O(N 2) operations and the calculation was thus lim-

ited to a simulation of only N = 323 nodes. The resulting _ distribution was very

sparse and it was difficult to infer a continuous distribution from a single realization.

Once the transfer T(k) is determined, the energy spectrum evolution is obtained by

solving
OE(k)

+ 2vk2E(k)= T(k) (3)

Starting from the initial spectrum used in the DS, (3) together with (1) and (2)

have been solved, figure 1 shows the energy transfer term at two different times

and indicates very good agreement with the DS results.

The ability of the EDQNM closure to produce accurate transfer spectra encour-

ages its use as a closure model (subgrid or supergrid) in a DS. A simulation at high

Reynolds numbers, with an inertial range extending for at least one decade, might

then be obtained by introducing both a subgrid and a supergrid model to account

for the transfer between the computed scales and the unresolved scales both at low

and high wave numbers. The energy spectrum is then subdivided into three regions
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FIGURE 2. (a) Partition of the energy spectrum into resolved and unresolved

scales. (b) Partition of the domain of integration for _(k,p, q).

as figure 2a shows. In the DS range k_o < k < khi the energy transfer can be

decomposed into two parts,

T(k) = To(k)+ Tog,(klkto, khi),

where Tc(k) is the transfer due to interactions between wave numbers within the DS,

T, gs(klkto, khi) is the transfer due to interactions involving wave numbers p, q < kzo

(supergrid T<(klkto)), and interactions involving wave numbers p, q > khi (subgrid

T>(klkhi)). The transfers due to interactions outside the DS are evaluated by (1).

figure 2b shows the contribution of supergrid and subgrid ranges to the integral (1).

When k is very close to khi, interactions between sub- and supergrid scales occur,

and these can be easily calculated.

Tile integral (1) is calculated by discretizing tile triangle into quadrilaterals of

different sizes whose areas are related to the number of points per octave used

to represent the energy spectrum. Thus, at each point inside the domain in the

(_,7) plane, E(k,p,q) represents the interaction of wave numbers p and q. When

T<(klkto) (supergrid) is calculated, _(k,p,q) is set to 0 unless p or q is less than

kto. In a similar way when T>(klkhi) is calculated, _,(k,p, q) is set to 0 unless p or

q is greater than khi.

To compare the transfers due to unresolved scales obtained by the EDQNM in-

tegral with those obtained by DS, the flowfield of a DS with a 128 s resolution has

been considered and the transfers across several cutoff wave numbers k_, have been

calculated. Figures 3 and 4 show that the distributions of T(k), T<(klkc), and

T>(klkc) obtained from DS are in very good agreement with those calculated by

EDQNM at both small and large times. As a result of this very good agreement

it is hoped that a DS can be used to simulate decaying turbulence at high Re. At
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Energy transfer distribution at t = 4.34 (a) k_ = 4, (b) k_ = 16:

T(k), ----- T>(klkc), T<(klk_); DS = T(k), o T>(klkc),

each time step the EDQNM calculation with k,_i,, << kzo and k,_a_ >> khi gives

the transfers T<(k]klo) and T>(k]khi) necessary to drive the simulation at the large

scales and remove energy at the small ones.
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q2

_12s 2

uI2/q 2

St = 0

20.89

.373

.329

.308

.0

Table 1.

Comparison between RDT and DS

case RR128: S = 28.28, l, : 0.01

St : 2

RDT DS

15.42 15.12

.428 .477

.242 .195

.329 .328

.535 .596

St:4

RDT DS

18.74 20.42

.502 .628

.181 .068

.316 .304

.579 .740

St:6

RDT DS

24.77 25.70

.534 .724

.166 .027

.299 .249

.558 .797

St : 8

RDT DS

33.34 31.11

.544 .779

.170 .012

.286 .207

.528 .812

St = 10

RDT DS

44.42 34.76

.525 .819

.191 .007

.284 .174

.498 .820

Case S64NJ: S = 10.00, v = 0.02

q2

_12s 2

3 /q

,2/q2u 1

St : 0 St : 2

RDT DS

20.89 4.29 5.19

.373 .452 .461

.329 .259 .165

.308 .302 .374

.0 .539 .843

St : 4

RDT DS

4.10 5.02

.535 .598

.166 .047

.299 .355

.607 .645

St : 6

RDT DS

4.81 5.16

.601 .699

.125 .018

.273 .283

.602 .471

3. Anisotropic Turbulence (rapid distortion case)

In the case of anisotropic turbulence the expression for the energy transfer term

is much more difficult to derive and it is not clear whether the eddy damping term

should have a tensorial or a scalar form. The time evolution of the correlations con-

sists in part of interactions between turbulence and mean fields and in part of higher

correlations. If interactions among the turbulent fields (slow terms) are neglected,

a calculation based on rapid-distortion theory, RDT, is possible. It is convenient

to work in a reference frame in which, for turbulence with some symmetry, all the

second order correlations can be derived from three quantities N1, N2, N3. In the

simple case of a shear flows with S = OU2/Ox3 the equations are (Craya 1958):

ON1 k2k3 ON1 _ fl,(k, O, _),
c9---_+ 2vk2N1 - 2S_ ,2 N1 - Sk2 c9k3

DN.._____2Ot + 2vk2N2 - 2S N3 - Sk2 ON2 - f_.(k,O,_o), (4)Ok3

ON3
sk2k3 --_y_ ON3 __ Q3(k ' 8, _),

g----t--+ 2vk_N3 - --_--N3 - S _ N1 - Sk2 Ok3
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FIGURE 5. Evolution of (a) turbulent kinetic energy, (b) Reynolds-stress an-

isotropy tensor. The present results are: -- B22, .... B11, ........ B33, ---- B23-

The solid symbols are the corresponding DS results.

where I_t(k, 0, _o) are the non-linear terms that are discarded in RDT. Introducing

the modified wave number system (kl, k2, k3 + Stk2) the system of equations (4)

can be easily solved.

Lee et al (1987) performed a DS by following the isotropic decay of an initial

spectrum until it reaches a value for the skewness of about -0.5. This field was

then used as the initial condition for a highly sheared simulation. Flow field struc-

tures similar to those found near the walls of a channel are obtained even when

the non-linear terms are neglected. We calculated this case by using EDQNM for

the isotropic decay and RDT for the high shear evolution, figure 5 shows good

agreement between the present results and those obtained by DS. A further com-

parison between the RDT calculations and cases S64NJ and RR128 of Rogers et al

(1986) has been completed. Table 1 shows that due to the predominant effect of

the viscosity on the shear, the RDT calculation predicts the behavior of the total

energy also at the later times, St, but it does not predict well the time evolution of
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each component. This is consistent with the analysis done by Brasseur during the

CTR summer school. He analyzed the effects of the slow pressure terms and found

i 2 •Our,2 and from there to u 1that these withdraw energy from u_ 2, transfer it to u 3

,2 than the one obtained by DS. On thecalculation shows a faster decay of the u 3

contrary u_ 2 agrees with the DS because the amount of energy it is receiving from
12,2 is comparable to the amount of energy it is transfering to u 3 .u 2

4. Conclusions

From these preliminary calculations we conclude that the two-point EDQNM

closure accurately describes the behavior of second order moments. This closure

can be applied as subgrid and supergrid models for Large Eddy Simulations at

higher Reynolds numbers• In the case of homogeneous anisotropic turbulence, when

the non-linear terms are introduced the calculation becomes quite onerous but is

still considerably less expensive than the calculation of a DS. The major merit of

two-point closure models is that they can be easily applied to flows at Reynolds

numbers that are unreachable by a DS. Work is in progress to derive expressions

for the non-linear terms that give good global conservation properties•
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Angular distribution of turbulence in wave space

By G. Coleman 1, J.H. Ferziger 1, J.P. Bertoglio 2

1. Introduction

As experience with the one-point closure models for turbulence in current use

has not been completely satisfactory, people have begun to search for other ways

to predict turbulent flows. One alternative that has been suggested is large eddy

simulation (LES) which, together with its more exact relative, direct numerical sim-

ulation (DNS), has had considerable success in the prediction of turbulent flows.

These methods are beginning to serve as partial substitutes for turbulence experi-
ments.

It is perhaps natural that people should regard these new methods as panaceas.

More careful consideration will lead one to be more cautious. DNS and LES have

been applied only to the simplest low Reynolds number turbulent flows. The

prospects for a large increase in the range of applicability of DNS in the near future

are very small. For LES, the prospects are somewhat brighter.

The range of flows that has been treated with LES to date is only a little broader

than that treated by DNS. The Reynolds numbers are somewhat higher but the ge-

ometries are almost as restricted. Three items pace the growth of LES applications.

The first is computational resources: speed, memory (both fast and archival), and

number of processors available. The second is numerical methods; there is, and

perhaps always will be, a need for faster algorithms applicable to a wide range of

geometries. Finally, there are the subgrid models required by LES; this is the focus

of the present work.

In simulations done to date, the Reynolds numbers were such that most of the

turbulence energy resided in the resolved scales. Under these circumstances, the

results are relatively insensitive to the quality of the model used for the subgrid

scale (SGS) component of the turbulence. As one pushes LES to higher Reynolds

numbers or more complex flows, the model quality becomes a more important issue.

It is safe to say that, if the models in current use are applied to these more difficult

flows, the results will be of reduced quality. Thus the development of improved SGS

models must be of highest priority if LES is to become an engineering tool.

SGS models in current use are, for the most part, based on the same ideas as one-

point closure models. To obtain significant improvements, new ideas will probably

be needed. It is here that turbulence theories may have a role to play.

1 Stanford University

2 Ecole Centrale de Lyon
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2. Turbulence theories

There is a wide range of turbulence theories. The modern ones deal with the

distribution of the turbulence in Fourier or wavenumber space. Use of Fourier

transforms implies that their applicability is limited to homogeneous turbulence;

however, their importance lies in the fact that they contain information about the

length scales of turbulence, something notably lacking in one-point closure models.

Extensions to inhomogeneous flows may be possible, but it is unlikely that these

theories will ever be applied directly to the complex engineering flows. Nonetheless,

they may be of use in the development of SGS models. In particular, one may

be able to regard the turbulence as locally homogeneous and apply the theory to

the prediction of the SGS turbulence. The objective is to obtain the best of both

worlds: the ability of LES to simulate inhomogeneous flows and that of theory to

provide length scale information.

In selecting a candidate turbulence theory on which to base an SGS turbulence

model, one should be guided by the following principles. The theory should be

successful in predicting homogeneous flows. The computation time should not be

too large. Finally, it should be capable of simplifications that will render it practical

for use as an SGS model.

There is no space to review turbulence theories here. Let it suffice to say that,

of the theories that we considered, the Eddy Damped Quasi-Normal Markovian

(EDQNM) model appears to have the brightest prospects. It meets the criteria

set forth in the preceding paragraph to a higher degree than its competitors. The

EDQNM model is based on simplifications of the moment equations in Fourier

space. The quasi-normal assumption replaces the fourth order moments by their

values for a Gaussian distribution. Eddy damping is introduced to restore some of

the important interactions removed by the quasi-normal hypothesis. Finally, the

Markovian assumption removes history effects that complicate the analysis. The

result is a system of non-linear integral equations for the second moments in Fourier

space. These are also the Fourier transforms of the two-point correlation functions;

hence this is a two-point closure method.

Solving the equations of EDQNM is not trivial. In the absence of further simpli-

fications, it is necessary to solve a coupled system of non-linear integral equations

in three dimensional wave space. This has been done for homogeneous flows with

excellent results. However, when using EDQNM as an SGS model for an inhomoge-

neous flow, it is necessary to solve these equations at each point at every time step.

Although EDQNM has been applied as an SGS model for homogeneous isotropic

turbulence, it is clearly impractical for more complex flows without additional sim-

plifications. Such simplifications have been used. For isotropic turbulence, one can

integrate over angles analytically and reduce the equation to one involving a single

independent variable. In other flows, the symmetries can be used to provide other,

less dramatic, simplifications. In the work reported here, we investigated possi-

ble simplifications in the homogeneous flow of most direct relevance to engineering

applications: homogeneous sheared turbulence.



Angular distribution of turbulence in wave space 73

3. Angular Distributions

One way to simplify EDQNM is to assume that the distributions of the second

moments in wave space can be represented as a sum of a small number of simple

functions. The equations could then be reduced to a set of non-linear algebraic

equations for the parameters. This would greatly reduce the cost of EDQNM and

could render it practical for use as an SGS model for inhomogeneous flows.

It is well-known that, in the inertial subrange, the spectral distribution of the en-

ergy obeys a power law. The viscous range can be represented by using a cutoff, the

details of which should not be important at high Reynolds numbers. Since the full

simulation data we will use as the basis of the current work is at Reynolds numbers

lower than those at which the model is to be applied, and the spectral distributions

are nearly always smooth, it was felt that there is little point in investigating the

distributions in wavenumber. We therefore concentrated on the angular distribu-

tion in wave space; caution is required because the results obtained may not apply

at higher Reynolds numbers.

The data on which our analysis is based represent isotropic turbulence which has

been sheared at a rate S = d_/dy until St = 12; the initial turbulence Reynolds

number based on microscale was approximately 50. The data, originally generated

by Mike Rogers, were supplied to us in the form of the Fourier-transformed velocity
field by Moon J. Lee.

The data were converted from Cartesian to spherical coordinates in wave space.

The ky direction was chosen as the pole of the spherical system while the k_ direction

was chosen as the origin for the azimuthal angle.

The angular distribution of the converted data was examined. At each wavenum-

bet, contours of each of the significant second moments (El 1, E2_, E33, and E12) and

the total energy were plotted as functions of the two spherical angles; only results

at the largest wavenumber for which an entire shell was available will be presented

here. The distribution was found to be smooth enough that it can probably be

represented as a sum of a small number of functions. The energy is concentrated

near the poles, indicating the presence of small scales in the ky direction caused by

shear-thinning of the eddies.

In order to further determine what is needed to fit the angular distribution, we

plotted the energy components on lines on which one of the angles is held fixed.

Figure 1 shows the results as a function of azimuthal angle for fixed polar angle

while figure 2 shows the energy as a function of polar angle for fixed azimuthal

angle. The distribution in polar angle can be fit with the first two terms of a

Fourier series while the distributions in azimuthal angle appear to require three

terms. Thus, approximately six terms should suffice to fit the angular distribution

of each component. If the distribution in wavenumber can be assumed, a total

of eighteen parameters should be the upper limit of what is needed to represent

the subgrid turbulence. With further experience, we may be able to reduce the

number somewhat. We estimate that using an eighteen parameter algebraic SGS

model would approximately double the cost of LES, a not unreasonable price if the

Reynolds numbers can be increased sufficiently.
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FIGURE 1. Distribution of Reynolds stresses over azimuthal angle ¢ at constant

polar angle 0 = 1.1794.

4. Future Work

We intend to continue the work described above. We will attempt to fit the

distribution of the second moments with a few functions as described above and

determine how many parameters are needed more precisely. At some later date,

we will try to perform an EDQNM calculation of homogeneous sheared turbulence

using the parameter set suggested by these fits. The results will be compared to

the original data used in this work and with the results of an EDQNM calculation

carried out in the usual way.
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FIGURE 2. Distribution of Reynolds stresses over polar angle 0 at constant az-

imuthal angle q_ = 1.5708.
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Big Whorls Carry little whorls

By J.C.R. Hunt 1, J.C. Buell 2, and A.A. Wray 2

The space-time structure of homogeneous isotropic turbulence has been studied us-

ing a direct spectral simulation on a 643 mesh at a microscale Reynolds number

of Rex = 48. Steady body forces were applied to a few low-wavenumber modes

to make the flow statistically stationary. The results for the two-point space-time

correlations of velocity and pressure (Rll and Rpp) show that the auto-correlations

of u and p are positive and have about the same integral time scales, and that the

spatial correlation Rpp(r) __ Rla(0, r,0). The form of Rpp(r) and the result that

p2/(pu_)2 __ 1.0 agree fairly well with the Hinze/Batchelor (Hinze 1975) results.

The three-dimensional energy spectrum for small space-time scales of velocity and

pressure are consistent with the concept of large eddies advecting the small scales

with a random Gaussian velocity (rms value of one component is u0 ): the wavenum-

bet (k), frequency (w) and the energy spectrum £(k,w) are related to the spatial

energy spectrum E(k) by the formula

£(k,w) = E(k)exp[-½w2/(akuo)2]/(v/-_(akuo)),

where a __ 0.4-0.5. The same form is found for the pressure spectrum. Extrapolating

this result to high Reynolds number implies that in the inertial range the frequency

spectra are ¢11(w) oc (euo)2/3w-s/3 (Tennekes 1975), and Cpp(_s) _ (euo)4/s_s-7/3.

1. Introduction

1.1 Background to the project

Recent reports on the structure of turbulence and its dynamics have tended to

emphasize the representation and the dynamics of the spatial structure rather than

tile temporal structure of the turbulent velocity field. However, closer examination

of dynanfical theories (e.g., Kraichnan's, described by Leslie 1981) show that they

are always based on certain assumptions about the temporal structure, which have

not been subjected to detailed examination or computation.

The temporal structure of turbulence also needs to be understood in order to

develop models for the effects of turbulence and fluctuating pressure fields on the

generation of surface and internal waves (Carruthers & Hunt 1986) and on dispersion

of pollutants, particles and bubbles. One of the ways of developing practical models

for these problems is first to develop a stochastic representation of the velocity field.

1 University of Cambridge

2 NASA Ames Research Center
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FIGURE 1. Flow field composed of large scale eddies and small scale eddies that

are transported by the large scales. The small eddies also deform on a larger time

scale.

The current research on the spatial structures (such as that of Moin 1987 and Moin,

Adrian & Kim 1987) needs to be supplemented by information on how the turbulent

velocity field evolves in time. (Some initial suggestions were put forward by Turfus

& Hunt 1986, but they will be superceded by the present work.)

The clearest recent account of the temporal structure of turbulence is given by

Tennekes (1975) and Tennekes & Lumley (1979). Essentially, the current under-

standing is that the largest scales of turbulence with velocity and length scales u0

and L are unsteady and change on a time scale L/uo. Meanwhile, smaller eddies on a

scale e with velocity u(e) ( defined by the structure function [lu(x) - u(x + r)12]

where Irl = f), have two time scales: the Eulerian time scale

r_(e) -,_ _/u0, (1.1a)

for the eddy to be advected by the large eddies past an observing point (moving

with the mean flow), and the Lagrangian time scale

rL(£)._£1u(£), (1.1b)

for the velocity field on a scale (l) to change as it is advected by the large scale

eddies. See figure 1.

Thus at a point (moving with the mean flow), the dominant time-dependent

phenomenon (which determines Ou/Ot) is the rapid, random movement of small

scale eddies past the observer by the large eddies. On the other hand, for a point

moving with the fluid, the only change of velocity is the slow change caused by

the dynamical processes at the scale £. These differences are best defined by the

Eulerian microscale

T(_) = [(0u/Ot)2/u-$1-1/2, (1.2a)
L / J
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and the Lagrangian microscale, following a material element,

r(L) = [(du/dt)2 /-_] -1/2 (1.2b)

For high Reynolds number turbulence these can be related to the basic time scale

L/uo by

_.(E) ,,_ Re-1/2L/uo ' (1.3a)

and

r (L) "_ Re-1/4L/uo, (1.3b)

where Re = uoL/v. Tennekes (1975) found that these estimates were consistent

with the grid turbulence measurements of Shlien & Corrsin (1974). Another impor-

tant consequence of Tennekes's analysis is that for high Reynolds number turbulence

in the inertial subrange, the frequency spectrum _11(_v) of one component of the

velocity, say ul, measured at a point (moving with the mean flow) has a form which

is different from the universal Lagrangian form

namely

¢_LI)(W) -: cL f._-2_ , (1.4a)

¢_E)(w) = CEI_,cu0 )2/a w-s/a , (1.4b)

where C_ is a constant for a given flow. Since this form depends on the large scales

which do not have (even approximately) a universal character, it is not likely that

C_ is a universal constant, unlike the constant for the one-dimensional wavenumber

spectrum ¢_1(kl) or energy spectrum E(k). The prediction (1.4b) has not to our

knowledge been properly tested experimentally or computationally.

No detailed analyses have been developed for the four-dimensional wavenumber-

frequency spectrum tensor @ij(k,w) or its equivalent energy spectrum £(k,w), de-

fined by

1

"i,(k,_)- (21r)4 / / / fui(x,t)u,(x+r,t+ r)ei(k'r+_)drd_, (1.5a)

and

£(k,_)= f qeii(k,w)dA(k).

Ikl=k

(1.5b)

Note that

£E(k) = C(k,,,)_. (1.5c)

However, Carruthers & Hunt (1986) made a rash speculation based on Tennekes's

time scale argument (in order to estimate internal wave generation) that

/;q'ij(k,,,) -_ _ij(k)_(,o + ku,), where _'_(k) = ¢_(k,,,)d,o. (1.6)
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Measurements have been made of one-dimensional space-time correlations R(r, r)

of velocity and pressure fluctuations in grid turbulence and in boundary layers

(Favre et al. 1956; Wills 1971), and in a pipe (Sabot & Comte-Bellot 1976). The

general features have been described by formulae of the form (in coordinates moving

with the mean flow)

R_a(rl,'r) _ Ral(r)F('r,r, uo,L)

where F('r = 0) = 1, and F decreases with r more slowly as r increases. See

Hinze (1975 p. 416). Similar forms are observed for fluctuating pressure. Wills

(1971) also took the Fourier transform of these measurements and calculated the

one-dimensional wavenumber-frequency spectra _bpp(kl,w). When converted into a

frame moving at the same mean speed as the travelling pressure field, he found that

his result could be expressed as

(1.7)

where f _ exp(--½ ,___Lk_ug)' and u0 is the rms value of the streamwise velocity com-

ponent (at y/_ "_ 0.5). Moser & Moin (1984) computed space-time correlations for

channel flow.

An interesting quantity that can be derived from these correlations is the Eu-

lerian time scale T_ ) (in a frame moving with the mean flow) of the i th velocity

component. [Since the measurements are not extensive enough for T (E) to be com-

puted from integrals of Rll(r), T (E) has to be estimated from the value of _" at

which R11 -_ 1/e.] The results of Favre and Moser & Moin indicate that the value

of T_i_), normalized in terms of the rms velocity and the integral length scale L_ i in

the flow direction has a range of values given by

f_(E) _.(E) __/Tii
= lii V u_/1_1'

(1.8)

where 1 < /3(E) _< 2. Snyder & Lumley (1971) inferred a value of fl(E) __ 3 from

their measurements of small particles in grid turbulence.

Using the same normalization for the Lagrangian integral time scale T(t ), defined

by

(1.9)

experiments and simulations indicate that /_(L) ___ 1 for grid turbulence (Snyder &

Lumley 1971), and boundary layer turbulence (Durbin & Hunt 1980). A random

Fourier mode representation for homogeneous turbulence has produced a value of

_(L) .._ 1/3-1/2.

So the current position is that the magnitudes of/9 (E) and f/(L) are not well

defined.
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I._ Aims of the project

The aim of the research presented here is to explore the space-time structure of

homogeneous turbulence by computing and then interpreting the two-point spectra

and correlations of the velocity and pressure fields. Many of these statistics are of

considerable practical importance, as indicated in the previous section. In partic-

ular it is of interest to compare the different time and length integral scales and

microscales for Eulerian and Lagrangian quantities, and to compare the space and

time spectra.

2. Some Theoretical Ideas for Guiding Interpretation

_.1 Velocity spectra

_.1.1 Simple non.interacting eddies

Consider a set of smooth eddies on a line, each located at a position zn, with

a spatial scale £n, a turnover time w: 1, and a random phase e,_. We consider, for

simplicity, one component of turbulence, ul ; then a typical form for ul is

N

ul(z,t) = E anexp
n=0

+¢n), (2.1)

where a, are random amplitude coefficients which are independent, -a,_am = 6,,_a_.

We assume the mean of w,_ is w---_,and its random element has variance a 2
ttJn "

The cross correlation at points z and z + r and times t and t + r, when averaged

over a length X -._ _ £n and over a sufficiently long time, is

N r2

Rll(r,r) = v/_2x Z _g" exp(- 4-_)exp(- ½a_. T2) c°s(w-_n')"
n=0

(2.2a)

or

= Rll(r, =

Then the time and space correlations are separable. Similarly the wavenumber and

frequency spectra are not linked, for this type of flow field.

_.1.2 Small eddies moved by a large-scale velocity field

Now consider a set of small eddies moved by a random large scale velocity U.

These might be the small scale components of turbulent flow. Again, take one
dimension: Let

M N

u = E E a,.,,,.,exp[i(k,x + wmt)], (2.3)
m.=-M n=-N

So in general the space-time correlation is not simply related to the spatial correla-

tion Rll(r). But, for the case of just one eddy scale L, where N = 0, R11 reduces

to

V_ 2 exp/__ r2R_(r,v) = -_-_aoL _-_) exp(- ½a_or2) cos(w0r), (2.2b)
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I Iwhere tom = Uk,,, + to,,,, an is again a set of random amplitude coefficients, and to,,_

is the frequency in tile advected frame.

Let the probability density function of/1 be p(U). Then

M N

' l
m=-M n=-N

It is interesting to consider two possibilities for p(U).

(a) V(U) is Gaussian with variance U_:

M N

Rl,(r,_') = ___ _-_ 21a,_mle_.,.e-_2k:vgei_'_. (2.5)
m=-M n=-N

Then the one-dimensional wavenumber frequency spectrum is

1

#,(k_,to)- (2_)_

M

=E
_ -M

f / 1 2 2 [2 • a 7"

rn=-M n=-N ov oo

(2.6)

For high wavenumbers, the advective time scale (klU0) -1 is much less than the

time scale for the eddies to change as they move. Consequently Ito',_l<< Ik_Uol. By

taking large enough values of N to give a dense distribution of Fourier modes, a

spatial spectrum _b(k,) from _b(k_,to) can be defined. From (2.6),

(_(kl,to) = _(k_)exp 2k2U2 (v_lk, lV0). (2.7)

Note that.

-/5/;/5_ = _(k,)dk, = _(k,,to)dk_. (2.8)
OO OO OO

' and for aIn a three-dimensional isotropic velocity field, to_ = U • k,_ + to,,,

Gaussian distribution of the 3-D large-scale velocity U, it can be shown that the

relation between the k-to energy spectrum and the k energy spectrum is

60 2

£(k,to, = E(k,exp ( 2k2U_)/(v/_kUo', (2.9,

where Uo2 = }IUI 2.

(b) The large-scale velocity has a constant magnitude (.forwards or backwards}:

_[g(U - U0) + 8(U + U0)], and this leads toIn this case p(U) =

Rn(r, _) = _ la_lJk_'e_°_ cos(_k_V0),
n
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FIGURE 2. Similarity of the length scales of velocity and pressure fields induced

by large vortices.

and

1 _ k,Uo)+ + k]Uo)]= (2.10)

2.2 Pressure

For large eddies having a form similar to vortices (such as analyzed by Townsend

1976), the large scale distribution of pressure across the eddy, say in the zl direction,

has a distribution similar to that of u2(z]) (figure 2). Consequently, the pressure

correlation Rpp(r]) is expected to have the same scale and form as R22(r]).

The pressure fluctuations at small scales have been found in previous investi-

gations (e.g. George et al. 1982) to be caused by the motions of eddies on that

scale, and not (for example) by interactions between small scales and large scales.

The former (which is observed) gives _pp(k]) oc e4/3k_T/3, while the latter gives

Cpp(k]) oc (U_/L2)e2/3k_ _'/_. Thus it is expected that, as the large scale ed-

dies advect the small eddies, they also advect the small scale pressure fluctuations.

Therefore the k-w power spectrum of pressure fluctuations is ezpected to have the
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form

2k2U2 (2.11)

This is close to the values measured by Wills (1971).

3. Method

To obtain the frequency spectra and time correlation of a turbulent velocity field,

a long time record is necessary; a decaying turbulent field is not appropriate because

the amplitude decay does not allow a long enough time record. It is necessary to

generate a statistically stationary velocity field.
The method used in these computations is to introduce a steady nonuniform force

field F(x) at the largest scale of the flow (defined to be 2_r in all three directions),
which induces a mean flow at this scale. The mean flow is unstable, allowing

instabilities to grow. This leads to a chaotic structure with motions at all scales

down to the Kolmogorov microscale. If the initial conditions are chaotic, the force

field will maintain the turbulence, but not necessarily at the original amplitude.

Given a spatially periodic flow (whose maximum scale is fixed) any steady force

distribution will eventually give rise to a stationary turbulent flow. This flow is

determined by F and the viscosity v.

The computations were performed on a N_ × Nv x Nz mesh with periodic boundary

conditions. The force spectrum Ey(k ) is chosen to have contributions from values

of k = v/2, i.e., k = (4-1,0,4-1), (4-1,4-1,0), and (0,4-1,4-1). To generate isotropic

turbulence, all the moments of the body force F(x) would have to satisfy isotropy

conditions. This could only be done approximately, by ensuring that moments up to

second order of the Fourier coefficients of F, f, satisfied isotropy. We also specified

that ]11213 = 0. F was chosen to be solenoidal to avoid the generation of large

pressure fluctuations. For each k such that [k I = v/2 the amplitude of the forcing

was set so that X/]i(k)],(k)=0.2. The viscosity v was D02O

The 3-D Navier-Stokes equations were solved under the above conditions using
1/

the spectral code of Rogallo (1981) modified to include the body force F. The

primary results of the computation were the time-dependent, 3-D spatial Fourier

coefficients of the velocity, 6, and pressure, ifi, fields, defined by

=
N.12 N,12 N,/2

kt=-N.D k2=-N,/2 k3=-N./2

_j(k, t)exp(ik- x), (3.1)

where N, = Ny = Nz = 64. A similar definition applies to/_(k, t).

After storing fij(k,t) at M time intervals Ats, the individual time series are

filtered with a cosine "window" within the period T = MAts. Fourier transforms

in time yield the 3-D space-time Fourier coefficients uj(k, wm), defined by

M/2

fij(k,t)= E _j(k, win) exp(iwrat),

rn=-M/2

(3.2)
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where w,_ = 2_rm/T.

The time interval Ats used for the computation of frequency spectra and time

correlations must be small enough to resolve the shortest time variation at a point.
(g)

This minimum Eulerian time scale ¢n_ia is defined by the fast large eddies carrying,

_(E) .._ lXol/Uo.at a velocity u0, the smallest scale eddies IKol past the point, i.e., Tmin

(It is Re-_ 1/2 times the magnitude of the Eulerian microscale!) In our computations

At (based on CFL limitations) turned out to be less than " " (E)u.IT_n , thus we took

At, = 10At.

The flow was initiated by suddenly imposing the force field on a given initial

initially increasedrandom isotropic velocity field u(x, t = 0). It was found that uj

or decreased, but eventually oscillated with small amplitude about a stationary

value; then the time series were collected to obtain the statistics.

From the Fourier coefficients, space-time spectra and correlations may be com-

puted, using the normalized length (2r) of the box.

(i) The wavenumber-frequency (k,0_) energy spectrum tensor,

_ij(k,w) = ui(k,w),ij(k,w), (3.3)

and sinfilarly for qJpp(k, w).

(it) The energy spectrum tensor,

@ij(k) = fii(k,t)fi_(k,t). (3.4)

(iii) The energy spectra (summing over spherical shells in wavenumber space; the

equivalent integral expressions for a continuum of wavenumbers are given in (1.5)),

£(k'w) = E @ii(k,w), (3.5a)

_- ]<lkl___ft+½

E(k) = E (I'ii(k). (3.5b)

_-½<lkl<k+½

(iv) The one-dimensional space-time correlation,

Rij(r, 1") = E E OYij(k'w)ei(k'r+w"*")" (3.6)

k m

(v) One-dimensional spectra,

k2 k3

(3.7)

4. Results of the computations

Table 1 gives most of the major statistics of the computed turbulent flow. Note

that the Reynolds number based on the Taylor microscale, A, is only 48, so that we
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do not expect to see many features of high Reynolds number turbulence. However

the Reynolds number is large enough so that the effects of advection of small scales

can be investigated. Note also that the t__urb___ulentvelocity field is not quite isotropic;

the lack of isotropy in the moments (u_/u_ _- 1.1) for a given realization is of the

same order as that usually found in wind tunnel experiments. This probably means

that the forcing is not quite isotropic. The ratio of the integral scales L_I , L_2,

computed from the one-dimensional correlations Rl_ (r_, 0, 0), R22 (rl, 0, 0), is 1.64.

This is less than the value of 2.0 required by isotropy. By comparison the decaying

strained turbulence computed on a 1283 mesh by Rogallo (1981) and others was

effectively defined to be isotropic at its initiation.

Figure 3 shows the unfiltered and filtered time variations of typical large scale

and small scale Fourier coefficients. Note the rather sudden changes in the small

scale filtered velocity. The time scale rk for such a change is consistent with large

scales advecting the small scales (_'k "_ 27r/(u0k)).

Figure 4a shows the contours of the energy spectrum £(k,0J), and figure 4b the

various statistics of the variation of £(k,_0) with o., for different values of k. The

mean and skewness are close to zero. The standard deviation defined by

_z = [i;oo_v2£(k,w)dw/ i_°° £(k,_v)d_] 1/2 (4.1)

V/_.-_-is described by theformula tre = akuo, where u0 = u i . The flatness (or kurtosis)

is close to 3. Consequently £(k,_) can be approximated by

£(k,_) = E(k)exp
_2

2( akuo )2 / ( V/_( akuo ) ) , (4.2)

where a __ 0.51 for kLl < 10, and a __ 0.4 for kLl >_ 15 (figure 4c). A similar

result for the k-w energy spectrum for pressure has been found with ap _" 0.51 for

kL1 <_ 10, and ap _ 0.45 for kL1 > 15. This result for £pv(k,w) is in approximate

agreement with the space-time correlation measurements of Wills (1971 ) for pressure

fluctuations on the wall below a boundary layer.

An important consequence of (4.2) is that by assuming its validity at high

Reynolds number we can calculate the Eulerian frequency spectra for the veloc-

ity _b_l(w) and the pressure q_pp(w). Since ck_i(w) = _ S£(k,w)dk and E(k) =

akc_/3k -s/3, where ak is the Kolmogorov constant, we have

1 rf 5__a21a
_,,(_)_ i ,6, ak(_Uo)213.,-sla

22/3v/_

Taking a = 0.51 yields

_bli(w) = O.085ak(,Uo)2/a -s/3. (4.3)
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FIGURE 3. Typical time variation of computed Fourier coefficients over the period

of time used for frequency calculations. The real part of fti(kz,k_,k_) is shown.

The data is filtered to allow processing by discrete Fourier transform methods: the

filtering is most apparent at the interval boundaries. (a) data at low wavenumber,

fi1(1,1,1): -- unfiltered, .... filtered; (b) filtered and unfiltered data at high

wavenumber, fi2(4, 4,19).

Similarly if Evv(k ) = C_kpe2/3k -7/3 (George et al. 1984), we deduce that

jap akp(_uo)4/3_7/3.,/3
21/3v/-_

Taking ap = 0.51 yields

Cpp(w) = 0.17akp(eu0)4/3w-7/3. (4.4)

The result (4.3) has the same form as proposed by Tennekes (1975), while (4.4)

appears to be new.



88 J.C.R. Hunt, J.C. Buell, and A.A. Wray

14o

_T 1
0

-140

1.78

(a)

6.88 11.90 16.96 21.97 27.01 32.04 37.08

kL 1

20

16

12

8

4

I I I I I I I

s.o\_o._. J<:
SLOPE 0.4 f_._ v_aANCE

!
_- , _., s,._..,_ss

5 10 15 20 25 30 35 40

(b) kL 1

Ol /% ' J '

I "-',._° ° 8

-10

0 5 10 15 20

kL 1
(c)

FIGURE 4. Space-time spectrum of energy. (a) Contours of the energy spectrum

£(k,to). k is normalized on L1, and _o on uo/Ll. Contours are in factors of v/i-0. (b)

Moments of the frequency distribution of the energy spectrum. Note particularly the

variance _re and the kurtosis Ke. (c) Relation between the space-time spectrum and

the space spectrum: --/_(k, w), .... (4.2). Results are from a later simulation.
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FIGURE 5. Auto-correlations in space and time for isotropic turbulence:

velocity, (b) pressure.

(a)

Figure 5 shows the longitudinal and transverse correlations of the velocity and

pressure fields. Note that for the velocity, the auto correlation curve R11 (r) has tile

same form as the longitudinal spatial correlation, R11(rl), and is positive, at least

for rl/L1 < 2.5. These curves are normalized on an integral length scale derived

from the energy spectrum (Monin & Yaglom 1971, p. 55),

//5L_ = _ k-' E( k)dk E( k )dk.

For these experiments Ll/2rr _ 0.25, i.e., about a quarter of the box size. It is

convenient to define length and time scales from these one-dimensional correlations

by a similar procedure as in many experiments. Because of the finite box size,

the one-dimensional integral scales are estimated from the value of the space or

time variable where the correlation is 1/e of the variance. So R11(r = L_I1)) --
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FIGURE 6. Comparison of the unnormalized pressure auto-correlation with tile

Hinze / B atchelor theory: -- computed, .... theory of B atchelor (1951 ). Results
are from a later simulation.

= 0).
are

and

On this basis our computed longitudinal length and time scales

L_ll)= 1.25L1,

T1 E) " 1.5L1/uo.

This value of 7;'(1E) is greater than the value of 1.15L1/uo obtained by Kyle Squires

(private communication) in decaying turbulence at. Rex = 35. Both estimates are

less than the value of 3 inferred by Snyder & Lumley (1971).

The pressure time and space correlations Rpp(r) and Rpp(rl) are plotted in fig-

ure 5b. Note that Rpp(rl)/Rpp(O) has a similar form as R_2(rl, 0, 0) in that the

curves become negative when r/Ll > 1.5 for the former and r/Ll > 1.3 for the

latter. A plausible physical explanation call be based on the typical form of the

large eddies discussed in §2.2. Note that, as for the velocity, the autocorrelation of

the pressure fluctuations is positive. An important result is that the mean square

pressure fluctuation is given by

-_/(pU_o) 2 _ 1.0.

This ratio is higher than the estimates made by Batchelor (1951) for low Reynolds

number wind tunnel turbulence (0.34), and for high Reynolds number turbulence

by Hinze (1975) (0.5), and George et al. (1984) (0.42).

A significant agreement with the theory of Batchelor (1951) is shown in figure 6

where the theoretical value of Rpp(rl ) (using R_,(rl ) from a later simulation having

lower anisotropy) is compared with computational results. The agreement is quite

good except near r = 0.

The final results, figure 7, were the power spectra E1 to E4 for the four quantities:

Vp + (u. V)u, Vp, o,_ and D- For high Reynolds number turbulence, where the-_, -b-i-"
viscous terms are small, the first and third spectra should be equal and also the
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FIGURE 7. Power spectra of the terms ill tile Navier-Stokes equations.

second and fourth. Furthermore if the eddies are advected past. an observer faster

than they evolve by nonlinear or viscous processes, then following Tennekes (1975)

o___and E3(k) should be much greater than _t and E4(k) for large k However the_gt

computations showed that Es and E4 were of comparable magnitude (within 20%).

But we did find that tile ratio El/E2 increased from about 1 to 8 as kLl increased

from 8 to 36. This is consistent with the advective contribution to (u- X7)u being

much greater than the local nonlinear contribution (which largely determines Vp).

We also found that. E4 (i.e. Du-D-i) was about 2 or 3 times as great as E2 (Vp), even

for kL1 -" 20, showing that the contribution of viscous stresses to E4 and -37Duis
dominant.

These viscous stresses are probably the explanation for why E3 is of the same

order as Ea. But if the viscous stresses are so relatively large, is this consistent

with the small eddies being apparently advected by the large eddies? A possible

explanation is that the small eddies are like slowly decaying vortices advected by

the large eddies. Within the small eddies the viscous term vV2u may be greater

than the advective acceleration term (U. V)u. But the time for the decay of say an

extended line vortex with core size k -1 is much longer than (vk 2 )-1. Therefore we
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draw the surprising conclusion that, for turbulence in this Reynolds number range,

the locations of tile viscous stresses is associated with relatively large values of 0___.__Ot

suggesting that first there is not necessarily a local instantaneous balance between

tile large straining and dissipation, and second the small eddies decay as they are

advected by the large eddies. Perhaps the generation of small scale turbulence

occurs on shorter time scales than its decay.

5. Conclusions and Further Work

1. The central hypothesis to be tested in this project of large scale eddies (or

Whorls) advecting (or carrying) small scale eddies (or whorls), was supported, if

not. completely confirmed. [Perhaps we should change one word in L.F. Richardson 's

rhyme: replace 'Big whorls have little whorls ...' with '... carry ... '!]

2. The computations raised numerous questions. To clarify the advection process

we need to compute the probability distribution of the large eddies, and for the

pressure correlations the probability distribution of the strain rates. We found that

the pressure correlation agrees fairly well with the Hinze/Batchelor theory which is

based on a quasi-normality assumptions for velocity moments.

3. In these simulations the turbulence was driven by a steady forcing function F.

The generality of the results is not clear until we explore further the effect of the

magnitude and spectral distribution of F. Also, do the initial conditions matter?

However there are encouraging signs of agreement with other kinds of simulations

and with measurements. These comparisons need to be pursued.

4. The computations have given rise to some important new physical ideas; the
connection between the advection of small eddies and the advection of small scale

pressure fluctuations; the structure of the large scale pressure field; and, finally,

perhaps some insight into the temporal pattern of the movement and decay of
small scale eddies.

5. There will be several applications of these computations to other areas of tur-

bulence research, including practical applications. It will be possible to compute

the effects of turbulence on the generation of internal and surface waves, and to

develop representations of the space-time structure of turbulence, either as a 3-D

stochastic field, or by means of conditional eddy techniques. Such representations

are being used to compute the motions of particles in turbulent flows, where it is

too expensive to use direct simulations.
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Table 1

Numerical and physical parameters

Number of mesh points: 643

Number of time samples: 288

Total disk storage used: 604 Mbytes
Boxsize: 27r

Force field: F' 1 2dx= _ f Ifl = 0.69

Kinematic viscosity: v = .02

Properties of flow field
1.-:7

Velocity field: _u i = 1.94

u0 ( 1 ---_-_1/2= -gui / = 1.14

Lengthscale: L1 = _ fo k-lE(k)dk/ fo E(k)dk = 1.25

Taylor microscale: )_ = [5 fo E(k)dk/fo k2E(k)dk] 1/2 = 0.84

Kolmogorov microscale: _Kol = (v3/c) 1/4 = 0.064

Reynolds number: Rex = uo)_/v = 48

Dissipation rate: e/(u3/Ll) = (15/Rex)(L1/)_) = 0.47

a / a/23 ,=1 i 1 [kOzi/ ]
Skewness: ( 33
Normalized force: F'Ll/u_o = 0.66

'Integral' length scales estimated from 1-D correlations:

Velocity: _11r(l)/r/_l = 1.25, L_z2)/L1 = 0.76

"(1)/L1 = 0.75Pressure: Lpp

'Integral' time scales: T_E)/(L1/uo)= 1.5

T_E)/(L1/uo)= 1.3
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Study of one-dimensional spectral dynamic
equations of the Reynolds stresses in
homogeneous anisotropic turbulence:

Application to split-spectrum modeling

By R. Schiestel 1

The CTR numerical data base generated by direct simulation of homogeneous

anisotropic turbulence has been used to calculate all of the terms in the spectral

balance equations for the turbulent Reynolds stresses. The aim is not only to test

the main closure assumptions used in the split-spectrum model, but also to try to

devise improved hypotheses deduced from the statistical information.

1. Description of the Split-Spectrum Model

1.1 Framework

The split-spectrum approach is a very simple way to introduce some spectral

information into one-point closure formalisms. The starting point is the spectral

equation for the Reynolds stress tensor _ij(k) originating from equations for the

two-point velocity correlations. The one-dimensional spectral equations are then

obtained by spherical integration in Fourier space. The split-spectrum scheme is

developed (Launder & Schiestel 1978, and Schiestel 1987 ) on the basis of partial

integration of the spectral equations over wavenumber intervals. The transport

equations for the partial stresses (figure 1) can be written formally:

d (m)
R_j

dt - P_?) + F_?-I) - F_?) + _7)- D_2) ' (I)

A B C D

where

.: f /= _oij(k)dk, and qij(k) = eij(k)dA(k). (2)
_rt--I

This multiple component splitting is such that the usual Reynolds stress Rij is given
by

M

Rij = Z RI'_ )" (3)
m----I

The different terms on the right side of (1) represent the following processes in

spectral slice m:

1 Institut de Mecanique Statistique de la Turbulence
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FIGURE 1. Decomposition of wave space into discrete slices.

A) production of R_ ) by mean velocity gradients;

B) net turbulent flux into the slice including inertial cascade transfer, transfer due

to mean strain, and the effect of time varying kin;

Okra

Fij = NFij + LFij -- _ij Ot

C) redistribution by pressure-velocity correlations including the fast and slow

parts;

D) viscous dissipation.

The definition of the time varying wavenumbers kin, which is related to the energy

spectrum, and the hypotheses on energy transfer across the spectrum are used to

derive transport equations for the energy flux F = ½Fjj. In practical applications

M is usually 2 or 3 but here, for the purpose of testing hypotheses, we consider the

wavenumber intervals given by the discrete mesh of the simulation.

1.2 Hypotheses

All of the main closure hypotheses can be tested by using the simulation data.

These are:

• rapid pressure-strain term:

The relaxation-of-production approximation is

7) (4)
t' "e i-/ _' 3

• slow pressure-strain term:
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The local-return-to-isotropy approximation is

, RI?)
N'lt ij ,.,_ -C1 -_(Rij 3 $ij) (5)

Although this looks like Rotta's model, the behavior can be very different.

• inertial transfer of energy:

The Kovasznay model for the transfer of energy is

Nff _ "_ 7KE3/2 k 5/2 (6)

where E(k) = ]_pjj(k)

• energy transfer due to mean strain, Aij = O_/Oxj :

L_" _ ----

• slow transfer for stress components:

2k

5 _oijAij (7)

NFij "_ N.T'(a_- +

• rapid transfer for stress components:

A proposal of D. Jeandel and J. Mathieu is

2(I-a)
(8)

3

k k

LFij _ -2-6[_ti(Atj+ Aft) + _lj(A. + A/t)]- _IraAtra_ij (9)

These closure hypotheses are among the simplest ones that can be formulated.

Our goal is to use the results of the simulations to determine the accuracy of these

models and, when the models nmst be improved, to suggest the form of more

sophisticated approximations.

2. Use of the simulation data

2.1 Methodology

The simulation database provides the Fourier transform of the velocity field _i(k)

for one realization of the flow field. The equation for the Reynolds stress spectrum

tensor cI,ij(k) = _i(k)_j(-k) can be written in terms of velocity Fourier modes:

O'_ij 2Atmk_ t k _b ^0
Ot + AiltblJ + Ajl¢_il -_ _ i mj + kjC_im) --Arm Okra (klt_iJ)

pi$ LI-I, i LTi_

ikrakz

k 2
[ki_j(-k )uT_-m(k) - kj_i(k)uT_(-k)]

_r

NFI,_

+ ikra[_j(-k)u'_'ff-ra(k) - _i(k)u_'ff'ra(-k)] + 2vk2cbij = 0

N Ti.i ¢i.t

(10)
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FIGURE 2. Typical variation of statistical sample with scale. Case PXB4 is shown.

One-dimensional spectra are then obtained by summing over the sample within

spherical shells. Thus we readily get the necessary terms to test hypotheses (4) to

(9).
R!_) ,TAm) v(m)

z$ = E(m) _ij = X'_(m) NIIij Nrij = _/-_(m) NTij
NYij (11)

,rAm) = XT_(,n) nIIij r,(m)P_) = _--'("0 Pij n'rij Lrij -- _-'("0 LTij

This treatment has been carried out using an adaptation of Rogallo's (1981)

computer code. The program computes the balance of each component of the

Reynolds stress spectrum tensor, the sums (11), and performs the comparisons (4)

to (9) using flow fields from the stored database.

The transfer term, nTi.i in (10), is difficult to compute because derivatives with

respect to wavenumber can not be accurately calculated within the context of the

simulation. In the simulation, a coordinate system moving with the mean flow was

used to remove such derivatives. The problem of evaluating LTij has been avoided

by considering the gross flux n Fij. Using

/ LTijdk = /Atm_ijdA(k)

we find

_(m) 1 _._Lr j = ,s-g ' ij
(,_)

The simulation shell sample varies with wave number (figure 2). For low wave

numbers the sample increases as k 2 (spherical shell), but due to the anisotropy of

the wave-space grid the sample decreases at high wave numbers even before the

limit of resolution is reached. In this case, we do not obtain true spherical averages

because some directions are privileged.
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2.2 Test cases.

In order to reach some degree of generality, it is necessary to consider a number

of different flows. The following test cases from the CTR database have been

considered:

uniform shear

RR1288

isotropic decay
HIE1

simple strains and relaxation from them

HIA9 PXB4 B4R1 B4R6 (plane strain)

HIC6 AXL6 L6R1 L6R6 (axisymmetric contraction)

HID6 P6R1 P6R6 (axisymmetric expansion)

successive strains and relaxation from them

M2V1 M2V1R1 M2V1R5

K3V1 K3V1R1 K3V1R5

M2U1 M2UIR1 M2U1R5

The shear case is from Rogers et al (1986) and the remaining fields are from

Lee & Reynolds (1985).

3 Comparisons and discussion

3.1 Homogeneous shear

The spectra of the various terms in the transport equation for u 2 are shown in

figure 3a. All of the terms have been filtered using a (¼ I 1, :, _) molecule to reduce
noise, however the rapid transfer term remains rather noisy.

Figure 3b compares the gross-flux, linear "fast" part. and non-linear "slow" part

to their approximations given by (6) and (7). The Kovasznay hypothesis overesti-

mates the non-linear transfer (possibly due to the lack of an inertial range in the

simulation). The free model constants are taken as unity here and in the following

figures and we direct our attention to how well the spectral shape of the model con-

forms to that of the modelled term. All values are normalized using the appropriate

powers of kinetic energy and dissipation rate.

The fast. pressure term and the slow pressure term are compared in figure 3c to

their approximations given by (4) and (5). The results are encouraging.

The linear transfer is overestimated by (9), but the sign of the approximation

is generally correct and the shape of the curve is acceptable. The model (8) for

the slow-transfer tensor approximation, with a = 1, is often nearly satisfied. This

is illustrated for the u 2 component in figure 3d. Figure 3e shows the ratio of the

right side of (4) to the left side and can be interpreted as the variation of C2 with

wavenumber and with stress component. The jumps simply reflect the fact that the

zero crossings of the data are not predicted exactly by the model. For components

u 2, v 2, w 2, and _ the mean value of (72 = 0.6 that is frequently used in classical

one-point closure can be inferred. The same ratio for (5) is presented in figure 3f.

We see that the coefficient C1 increases continuously with k, implying a more rapid

return to isotropy at high wavenumbers.
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$.Y_ Simple strains.

Comparisons like those above are presented in figures 4a to 4d for the case of

a plane strain. The models for the pressure terms compare favorably, but the

model (8) seems inadequate for the slow transfer terms. Similiarly, the model (6)

overestimates the nonlinear transfer of energy. The coefficients C1 and C2 both

increase slowly with k and are different for each component of the tensor.

$.$ Successive strains and relaxation
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data,

This is an interesting case and is particularly relevant for the multiple-scale ap-

proach. The M2V1 flow (figure 5) is the result of a strong axisymmetric contraction

followed by a plane strain. The M2V1R1 flow (figure 6) is the relaxation of M2V1

when the straining ceases. Most of the remarks in section 3.2 are still applicable.

In this particular case the simulation exhibits an increase of the Reynolds stress

anisotropy at the beginning of decay. This paradoxical effect can be produced by

(5) when the coefficient C] increases with wavenumber (this occurs for example in

figure 6b) and when the initial spectral distribution is such that anisotropies at large

and small scales are more or less compensating (this occurs in M2V1). Then a rapid

return to isotropy of the fine scales reveals the anisotropy of the larger scales which

was hidden temporarily (Schiestel 1986). Such a behavior cannot be obtained with

one-point models using the Rotta hypothesis. Some spectral information is neces-

sary to describe this phenomenon.

4. Concluding remarks.

Numerical simulations of turbulent flows provide a large amount of data, a

thought provoking wealth of information.

The main advantage of this type of comparison is that a great variety of flows can

be considered, and this is necessary to test closure hypotheses. Moreover various
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initial conditions can be introduced in the calculation, even if they are not experi-

mentally feasible. Various statistical information can be easily extracted from the

data. All the terms in the spectral equations can be calculated, and this is particu-

larly interesting for terms involving pressure correlations that cannot be measured.

The limited Reynolds numbers of the simulations and the statistical noise caused

by a small sample, particularly at the large scales, causes some difficulty in the

interpretation of the results, but the method of approach proved to be a powerful

tool for testing and improving spectral closures.
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Modeling scalar flux and the
energy and dissipation equations

By A. Yoshizawa 1

Closure models derived from the Two-Scale-Direct-Interaction Approximation have

been compared with data from direct simulations of turbulence. In the working

session, we have restricted our attention to 1) anisotropic scalar diffusion models,

2) models for the energy dissipation equation, and 3) models for energy diffusion.

1. Anisotropic eddy-diffusivity model for turblent scalar flux

The scalar flux is represented by a gradient diffusion model

00
U'O' = -Dij

i Oxj

with a diffusivity tensor Dij that depends on the mean strain and vorticity tensors

(Yoshizawa, 1985).

k_ k_ [CKA ( Ou i O_j Ozui Oruj

The accuracy of the model is shown in table 1 by comparison at several times t

of the actual fluxes with the modeled fluxes in a direct numerical simulation of

homogeneous turbulence in uniform shear S having a uniform scalar gradient. The

scalar diffusivities D22, Din, and D21 are represented well by the model but Daa

and Daa are not. The performance of the model might be improved by the inclusion

of unsteady terms in CK suggested by the TSDIA analysis.

10ko ko 0_o ko O_
CK --+ CK + a---- + b + c----

_o Ot -_o Ot co_ Ot

Table 1. Evaluation of the Scalar Diffusion Model from case C128U

of Rogers, Moin, and Reynolds (1986)

" = .06)(CK = .187, CKA = .132, CKA

St D22 -D12/D22 -D21/D22 D33/D22 D11/D_2

model data model data model data model data model data

8 .068 .090 1.97 2.38 1.32 1.20 .737 1.98 .936 5.58

10 .102 .108 2.74 2.63 1.27 1.23 .695 1.98 .826 6.52

12 .150 .146 2.54 2.56 1.24 1.23 .663 1.82 .760 6.60

14 .205 .194 2.60 2.45 1.17 1.23 .649 1.77 .717 6.44

16 .250 .265 2.51 2.21 1.19 1.15 .634 1.66 .746 5.77

1 University of Tokyo
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2. A model for the dissipation of kinetic energy

Here we contrast the familiar k - c model (model 1),

De e e2 0 k 20_

Dt - cd _ e - C,2 _ + -_zi ( C,--_- Oz---_),

C,1 _- 1.4, C,2 -_ 1.9, (7,, __ 0.07,

with the model derived via the TSDIA approach (model 2; Yoshizawa, 1987) ,

De C,1 e e2 O_i
Dt _P - C,2--_ + C,lk(ox j

C,1 = C,2 _ 1.70.

Note that for both models, the eddy-viscosity approximation implies that

C,, P = C,,C,,k(--ff-- + ¢)2
azj ozi

where C_ _ 0.09. For homogeneous turbulence in uniform shear S, model 1 reduces

to

__ __ _2

Ot - C,1 _ P -

and model 2 reduces to

_2

OeO_t tee C_2_ + 2C_lkS 2= 6',1-:P -

These two models were tested against the homogenous shear turbulence fields of

Rogers et al (1986) for 8 _< St < 14. The resulting "constants" were found to be

.97 < C,1 _< 1.2 for model 1, and 1.7 < C,1 <_ 1.9, -.025 < C_1 < -.018 for model 2.

Note that the negative value of C: 1 implies that the effect of rotation, given by the

third term of the model, acts to reduce the dissipation rate. The simulation data

also support the relationship C,1 = C,2 -_ 1.7 suggested by TSDIA.

3. A model for the diffusion of kinetic energy

The diffusion term
0.1,,,

= -b-iT + p"4)

in the equation for kinetic energy is usually modeled as (model 1)

0 k 2 Ok
Dk -- (CK----),

Ozj e Oxj
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FIGURE 1. The eddy viscosity distribution in turbulent channel flow. Ex-

perimental data of Hussain & Reynolds: /_ R = 32300, o R = 13800. Model:

---- R = 32454, -- R = 12581, .... R = 3666.

whereas the TSDIA analysis (Yoshizawa, 1982) indicates the presence of a cross-
diffusion term

k 2 Ok _ k 30_
0 + ( -- -- ).

Dk - Oz i e Oxj _2 0zj

These models have been compared with the turbulent channel flow data of Kim et al

(1987) (hereafter KMM) for 100 < y+ < 180. The Reynolds number is 3300, based

on channel half-height and centerline velocity, and the centerline is at y+ = 180.

When the data was fit with a single term of the model, the constants were esti-

mated to be .11 < Cgh" < .12 when Ch'_ was set. to zero, and .06 _< CK, < .08 when

(-.TKK was set. to zero. At high Reynolds number, the eddy viscosity distribution

(VT = u_v'/S) has maxima off the centerline of the channel. The cross-gradient

term in model 2, when incorporated into a k - e model, can produce the off-axis

maxima whereas model 1 cannot. However, at the low Reynolds number of the

sinmlation, the eddy viscosity did not exhibit the off-centerline maxima strongly

enough to allow the two constants to be found simultaneously from the data alone.

If the constants are taken as C/t'/_" = .08 and CK_ = .03, the locations of the

maxima and their values are reproduced. The data of KMM indicate a maximum

VT/V = 16 at y/d = +.5 while the model gives a maximum of 18 at y/d = +.47. A

comparison of the eddy-viscosity distribution of model 2 and experimental data at

higher Reynolds numbers is shown in figure 1.
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Overview of the scalar

transport/reacting flows group

This group conducted five projects aimed at developing improved modeling capa-

bilities for turbulent flows with scalar transport or chemical reaction. Two projects

used existing data bases selected from previous simulations of incompressible ho-

mogeneous flows, both with and without mean deformation; two modified the basic

program for homogeneous incompressible turbulence to account for simple chemical

reactions; and one modified the code to include a Boussinesq buoyancy term.

The invited participants were:

Dr. William T. Ashurst (Sandia National Laboratories)

Dr. Sherif E1-Tahry (General Motors Research Laboratories)

Prof. James C. Hill (Iowa State University)

Mr. Mark J. Jennings (Illinois Institute of Chicago)

Mr. Andrew D. Leonard (Iowa State University)

Prof. Wolfgang Kollman (University of California, Davis)

Dr. Thomas Morel (Integral Technologies)

Mr. Masood Mortazavi (University of California, Davis)

The local participants were:

Mr. Scott D. Abrahamson (Stanford University)

Prof. Joel H. Ferziger (Stanford University)

Prof. William C. Reynolds (Stanford University and NASA Ames)

Dr. Robert S. Rogallo (NASA Ames)

Dr. Michael M. Rogers (NASA Ames)

Mr. Christopher J. Rutland (Stanford University)

Mr. Kyle D. Squires (Stanford University)

The principal accomplishements of each project are summarized below.

Pressure gradient statistics in homogeneous shear

Using the data base for homogeneous shear, Kollman, Mortazavi, Squires and

Rogers examined one-point probability density functions for the pressure gradient,

conditioned on components of the fluctuating velocity and vorticity. The objective

was to develop a firm basis for modeling quantities needed in pdf treatments of
turbulent flows.

They found that the expectation value of the fluctuating pressure gradient, condi-

tioned on a turbulence velocity component, is linear in the velocity component over

the range of velocity where an adequate sample existed. In contrast, the expectation

values of pressure gradient conditioned with vorticity were found to be very small,

indicating that the pressure gradient is statistically independent of the vorticity.

It thus appears that the conditioned pressure gradient term in homogeneous shear



114

flow can be modeled as < (1/p)cqp/Ozilul,u2,us,wl,w2,w3 >= oqiul+a2iu2, where

_1 < 0 and a2 > O. This model is likely to be useful in pdf modeling of turbulence.

Modeling turbulent scalar transport

Morel, Jennings, and Abrahainson explored Morel's ideas for non-locai mod-

eling of turbulent scalar transport using integrals formed from two-point corre-

lation functions. For hoinogeneous turbulent shear flow they examined quantity

Iq(t) = f Q_k(r,t)rirjdZr where Qij(r,t) = ui(x,t)uj(x + r,t). Morel's conjecture
was that the component of turbulent transport of a scalar 4_ in the i th direction

might be modeled as T¢D.= C cb,j Iij where • is the mean scalar field. This is of the

form T¢. = -Dij_b,j which Rogers et al. (1986) found fit their direct simulations of

homogeneous turbulent shear flow. However, Motel's model gives a symmetric Dq,

whereas Rogers found that Dij is non-symmetric. Thus, while Morel's model pre-

dicted the correct trends for the diagonal terms, it did not predict the off-diagonal

terms. Further study of these ideas is planned by Morel and Jennings.

Buoyant convection

The Rogallo code for homogeneous turbulence was modified by Ashurst and

Rogers to include a Boussinesq forcing term in the momentum equation. The ob-

jective was to study the effects of buoyancy on the relationships between vorticity

and strain rate in homogeneous shear flow.

An unstable temperature gradient was imposed in the gravitational direction and

the turbulence development was studied and compared to a zero gravity isotropic

decaying case. A computational box that was twice as long in the gravitational di-

rection as horizontal was employed to permit the simulation to be run longer before

the flow structures were affected by the imposed periodic boundary conditions. The

sinmlations were begun from developed initial isotropic fields at Rea = 7.8 and run

on a 64 × 32 × 32 grid. The Rayleigh number based on the Taylor microscale varied

from 21 to 93, and the Prandtl number was 0.7.

As expected, the Boussinesq term eventually caused the velocity fluctuations

and length scales in the gravity direction to grow. The relationship between the

vorticity and the eigenvectors of the strain-rate tensor in the buoyant fields was

qualitatively similar to that observed in incompressible homogeneous shear flow and

isotropic decaying turbulence studied previously (Ashurst et al. 1987). Specifically,

the vorticity has a large probability of aligning with the intermediate strain-rate

eigenvector direction and at large strains this intermediate strain-rate is extensional.

This direction has a low probability of being aligned with the gravitational direction.

The temperature field also behaves like the passive scalar fields in incompressible

shear flow in that the local temperature gradient is most likely to be aligned with

the most compressive eigenvector of the strain-rate tensor. In addition, the scalar

dissipation (conditioned on the kinetic energy dissipation) resembles the behavior in

incompressible shear flow, exhibiting a near linear dependence at large values. These

results should be useful to developers of models for buoyant turbulent convection.
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Premixed flame in homogeneous turbulence

E1-Tahry, Rutland, Ferziger, and Rogers modified the Rogallo code for homoge-

neous turbulence to study premixed turbulent flames in decaying isotropic incom-

pressible turbulence. The objective was to to determine the effect of turbulence on

flame structure and speed speed over a range of Damkohler number. The results,
though preliminary, are be of interest to combustion modelers.

They considered the reaction A _ B, where A denotes prenfixed reactants and B

denotes products. A temperature-dependent reaction rate was used, with the Arrhe-

nius parameters adjusted to yield a flame width of about ten gridpoints (to resolve

the structure) and a 15°C temperature rise across the flame (to allow treatment as

incompressible). In order to keep the flame thin compared to the turbulence scales

and still resolve the flame structure, the Reynolds number had to be kept small, and

the Taylor microscale Reynolds number was only about 5 in their simulations. The

Damkohler number was approximatrely 1.5. A 128 × 128 × 128 grid was employed,

with a uniform initial chemical distribution (premixed reactants) and a Gaussian

temperature distribution sufficient to ignite the reaction. A purely laminar case

was run for reference purposes.

The resulting flame front exhibited the characteristics of a wrinkled laminar flame;

the local flame structure was everywhere similar to that of a laminar flame, with

isotherms approximately parallel at about the same spacing as in the laminar case.

The wrinkling of the instantaneous flame front appeared well correlated with the

local velocity fluctuations and resulted in a mean flame thickness of about twice the

local (laminar) flame thickness. The increased reaction area led to turbulent, flame

speeds about 20% larger than the laminar flame speed. As tlle flame propagated

through the decaying hydrodynamic field it slowed due to the decaying turbulence

intensity (decreasing roughly linearly with the rms turbulence intensity) and thick-

ened slightly, perhaps due to tlle increasing turbulent length scales.

The probability distribution of the mean reactant mass fraction at different po-

sitions through the mean flame location agrees with the wrinkled lanfinar flame

model of Bray and Moss (1977), consisting of two delta functions representing pure

reactant and pure product joined by a region of low probability proportional to the

inverse of the reactant mass fraction gradient.

Diffusion flame in homogeneous turbulence

Hill, Leonard and Rogers modified Rogallo's code to begin a study of a simple

diffusion chemical reaction in incompressible homogeneous turbulence. The objec-

tive was to determine the influence of vorticity and strain rate on the structure and

propagation of the reaction zone (flame).

They considered a simple irreversible chemical reaction A + B + C --+ P + C

occuring in isotropic turbulence with the reaction rate proportional to the product

of the local concentrations of non-premixed reactants A and B through a constant

reaction rate coefficient. P denotes the product, and C is an inert diluent. The mass

fractions of the four species were computed along with the hydrodynamic field on

a 64 × 64 × 64 grid. The initial chemical composition consisted of alternating slabs
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of pure reactants A + C and B + C. The Schmidt number was unity for all species.
Two runs with different reaction rates resulted in Damkohler numbers based in the

initial mean reactant concentration, turbulence intensity, and integral velocity scale

of 2 and 10.

The instantaneous reaction front appeared more convoluted in this study than

in the premixed flame calculation described previously, presumably due at least in

part to the higher Reynolds number of this simulation. The structure of surfaces of

constant reactant concentration appear to be well correlated with the local velocity

field. The simulation indicates that the dissipation microscale of the concentration

fields is not greatly affected by the Damkohler number, suggesting that the diffusive

effects can be treated reasonably well by correctly modeling an equivalent non-

reacting flow.

These observations may be helpful ill reaction for modeling. Hill and Leonard are

continuing this work, and plan to study the effects of mean strain and shear on the

flames, variation of the reactant Schmidt numbers, sensitivity to initial conditions

and non-stoichiometric mixtures.

W.C. Reynolds, M. M. Rogers
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Direct numerical simulation of

buoyantly driven turbulence

By Wm. T. ASHURST 1 AND M. M. ROGERS 2

Abstract

Numerical simulations of homogeneous turbulence subject to buoyant forcing were

performed. The presence of a mean temperature gradient combined with a gravita-

tional field results in a forcing term in the momentum equation. The development

of the turbulence was studied and compared to the decay of similar fields in the ab-

sence of gravity. In the buoyantly driven fields, the vorticity is preferentially aligned

with the intermediate eigenvector of the strain-rate tensor and the local temperature

gradient is more likely to be aligned with the most compressive eigenvector. These

relationships are qualitatively similar to those observed in previous shear flow re-

sults studied by Ashurst et al. (1987). A tensor diffusivity model for passive scalar

transport developed from shear flow results in Rogers, Moin & Reynolds (1986) also

predicts this buoyant scalar transport, indicating that the relationship between the

scalar flux and the Reynolds stress is similar in both flows.

Discussion

During the workshop period, calculations were made with 64 by 322 grids in order

to examine the effect of forcing the velocity field with scalar fluctuations. With the

Boussinesq assumption of a zero divergent velocity field, the modifications to the

Rogallo (1981) code were simple. The buoyant forcing develops flow patterns at

large length scales in the gravity direction. Because of this, a grid which is longer in

the gravitational direction is used. The flow is analyzed at a time before the large

scales feel the effect, of the periodic boundary conditions. Calculations were made

with and without gravity, that. is forcing and no forcing.

The Rayleigh number based on the Taylor microscale of the velocity field, _, is

defined as Ra_ = (g/To)l -Tl 'Pr/v 2, where z is the gravitational direction and

g is the gravitational acceleration. The Prandtl number, Pr, was taken to be 0.7

and the Taylor-nficroscale Reynolds number was 7.4. In the field analyzed here

Ra_ = 93 and the ratio Rax/(Re2Pr) is 2.4.

Previous work by Ashurst et al. (1987) indicated a coupling between the vorticity

field and the eigenvectors of the strain-rate tensor (ordered so that o >/3 > 3') as

determined from single point analysis of the alignment between the vorticity vector

and the strain-rate directions. This analysis was repeated for the buoyantly driven

fields and similar results were found in that vorticity has a large probability to

1 Sandia National Laboratories

2 NASA-Ames Research Center
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align with the intermediate strain-rate direction (Figure 1) and at large strains

this intermediate strain-rate is extensional. In this buoyant flow we find that both

the vorticity and the intermediate strain-rate are more likely not to point in the

gravitational direction which is consistent with the fact that the plumes present in

this flow tend to produce vorticity normal to the gravitational direction.

The behavior of the temperature gradient is also similar to that observed in ho-

mogeneous turbulent shear flow. Figure 2 presents the alignment of the temperature

gradient with the three strain-rate eigenvectors. The most probable direction is the

most compressive strain-rate direction with a peak value that is twice that found

in previous passive scalar simulations.

Figure 3 presents scalar dissipation values conditioned on the energy dissipation

value. As in the passive scalar shear flow results there is an increasing power-law

dependence with increasing strain-rate.

A comparison between the heat flux observed in the simulations studied here with

flux predictions from the model developed in Rogers, Moin & Reynolds (1986) is

shown in Figure 4. The qualitative agreement is good and slight adjustments to the

fitting function used for the single model constant could improve the results further.

It is not surprising that the fitting function may require modification because it

was developed from homogeneous shear flow results at Rex '_ 100 and therefore a

significant extrapolation is required to the field examined here with Rex = 7.4.
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In conclusion, much of the behavior of this buoyantly driven homogeneous tur-

bulence resembles the behavior of homogeneous turbulent shear flow, despite the

different production mechanisms of these two flows.
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Premixed turbulent flame calculation

By S. EL-TAHRY 1, C. J. RUTLAND 2,

J. H. FERZIGER 2 AND M. M. ROGERS 3

The importance of turbulent premixed flames in a variety of applications has

led to a substantial amount of effort towards improving our understanding of these

flames. Although these efforts have increased our understanding, many questions

remain. For example, there is contradicting evidence concerning the role of the

turbulent length scales on turbulent flame speed. There are a variety of proposals

that attempt to correlate the turbulent flame speed with the turbulence velocity

(e.g., Bray, 1980 and zur Loye and Bracco, 1987). As in non-reacting turbulent

flows, the main impediment is the inability to both adequately control experiments

and to adequately measure the quantities of interest in the experiments. With recent

advances in supercomputers and the accompanied development of direct numerical

simulation (DNS) it might now be possible to alleviate some of these difficulties.

There are a variety of questions that are currently being raised in turbulence

combustion modeling work for which DNS can provide answers. For example, what

is the instantaneous structure of a premixed turbulent flame? Flame structures are

difficult to obtain experimentally because of the fine resolution required. Knowledge

of the flame structure can aid in closing the viscous dissipation term in the equation

for the variance of relevant scalars (for a related example see Pope and Anand,

1985). It is anticipated that in the thin flame mode of combustion (i.e., when the

turbulence strain rate is small compared to the reciprocal of the chemical time scale),
the flame structure is similar to an undisturbed laminar flame. We need to test this

assumption under a variety of circumstances such as different chemical systems,

different. Lewis numbers, and different ratios of turbulent velocity to laminar flame

speeds ( u' / SL ).

A fundamental question that can be addressed with DNS is what factors control

the turbulent flame speed (ST). For example, what are the turbulence characteris-

tics that control ST and what is the form of the correlation of these characteristics?

In DNS we know the values of all quantities at each grid point at every time step. In

addition, both Eulerian and Lagrangian (i.e., following the flame surface) analyses

can be conducted and parameters can be switched on and off. Thus with DNS more

information can be gained than is possible experimentally and many questions can

be addressed. However, there are limitations to DNS and these are reviewed next.

The first limitation of all DNS is the range of scales which can be resolved. Small

grid spacing is required to resolve small scales and large domain size is needed

to capture the large scales. Computer resources limit this range and hence limit

1 General Motors Research Laboratory

2 Dept. of Mech. Engng., Stanford University

3 NASA-Ames Research Center
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FIGURE 1. Schematic of the flame geometry.

the maximum Reynolds number of the computations. In the presence of premixed

flames there is a more stringent condition on the Reynolds number that arises if

calculations are to be made in the more interesting thin flame regime that occurs

at high Damkohler numbers (Da). We define Da based on the strain rate of the

turbulence i.e.,

AST
Da-

where A and _ are the Taylor microscale and the flame thickness, respectively. Then,

it is generally accepted that the thin flame regime is achieved with Da greater than

unity. To reveal the extra constraint on the Reynolds number in the thin flame

regime, we can rewrite Da as

Da = (N1Re_°"S/N )_2 n , (:)

where N1 is the number of grid lines spanning the computational domain along

a coordinate direction, N2 is the number of grid points that will span the flame
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thickness, ReL is the Reynolds number based on the integral length scale and n is

the number of integral length scales present in the computational domain.

In deriving (1) we used the standard relations between the turbulent scales, hence

the equation is to be used only for order-of-magnitude purposes, particularly at

small Reynolds numbers. We notice that NI is constrained by the maximum job

size that can be run and N2 is limited by resolution considerations. We cannot set n

too low; otherwise the large eddies become too large for the computational domain

before there has been sufficient time for the flame to develop and propagate. Thus,

the only avenue available to obtain large Damkohler numbers is to reduce ReL.

The other relevant constraints on the DNS calculations are the periodic boundary

conditions and the limitation to incompressible flows. These constraints are par-

ticular to the computer code that is used in the present study (Rogallo, 1981) and

in principle can be eliminated. The former constraint may not be too significant.

The latter constraint, however, precludes studying important aspects, such as the

influence of the flame on the turbulence and the effect of hydrodynamic flame insta-

bilities on the flame structure. The present work is an initial effort in studying thin

premixed flames using DNS. We attempt to address some of the questions raised

earlier and we do so under the mentioned constraints.

The problem considered is shown schematically in Figure 1. It consists of a planar

flame sheet, located in the y-z plane, initiated at the midpoint of the z-direction.

The chemical kinetics model used is a hypothetical, single-step kinetics with a single

reactant A going to a product B. The equations which govern the thermal and

chemical states are the conservation equations for species A mass fraction, YA, and

the temperature, T. These are:

DYA _ ./r.V2]_ _ bYA exp(-T_/T) (2)
Dt

DT

Dt - 7rV2T - bHYA exp(-Ta/T) , (3)

where D/Dt is the substantial derivative, 7Y and 3T are the (uniform and constant)

diffusivities of mass and heat, respectively, b is a pre-exponential factor, Ta is the

activation temperature, and H is the enthalpy of the reaction. In the present

calculation we have taken the diffusivities of mass and heat to be equal (i.e., the

Lewis number is unity). For Lewis number not equal to unity, a term involving

species diffusion should be added to the temperature equation. The value of H was

selected so as to yield a temperature rise of 15 ° across the flame. This ensured a

small density variation due to the reaction so that our assumption of a divergence-

free velocity field is acceptable. The values of b and Ta were selected to give a flame

thickness spanning about 10 grid lines and an inner flame region spanning about 4

grid lines. The values of these quantities were established by trial and error using
a laminar flame code.

To implement (2) and (3) in the DNS code (Rogallo, 1981), the source terms

had to be added to the already existing scalar equations and a chemical time step
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FIGURE 2.

315

I,IJ
n"

310
I-
<_
ae
IJJ

=E 305
14.1
I-

.__u.i_ I"-

I 1 :

t j I '

300 I ....

0 1 2

o @

i I ,

3 4 5 6
X

Laminar temperature profiles at, 400 step intervals.

C-
A

10-1

10-2

ul

10-3

uu

(a)

10-4 ....... ,
2 X 10-2 10-1

/,

..4

--4

--4

-,4

(b)

I I I I I I II t

10-2 10-1
I I I I i IIII 1 I l I I I I IIIIII

1 1
k/k k k/kk

FIGURE 3. Velocity energy spectra (a) Initial spectra (b) Spectra after 50 steps,

at the beginning of the reacting part of the calculation.

stability constraint had to be implemented. The calculations were performed with

a 128 x 128 x 128 grid.

To test the accuracy of the flame calculation with the DNS code, a laminar flame
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propagation calculation was made on the same geometry as depicted in Figure 1

and the results were compared to the results of a similar calculation made with an

accurate laminar flame code. The results of the laminar flame calculations made

with the DNS code are shown in Figure 2. The figure shows the temperature profiles

at 400 step intervals which begin at t = 0 with a Gaussian distribution. It is seen

that after 400 time steps the profile has significantly steepened relative to the initial

conditions and the flame thickness has approximately stabilized (i.e., the initial

conditions are forgotten). Comparison of the flame speeds obtained from the two
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1/4 (c) z station = 1/2 (c) z station = 3/4.

codes were found to be within 2% of each other. This is good agreement considering

that only about 10 grid points were within the flame and that no de-aliasing was

attempted for the non-linear source terms.

For the turbulent combustion calculations, the underlying hydrodynamic field

was an unforced isotropic turbulence. To achieve a developed turbulence spectrum

at the start of the chemistry calculations, the latter calculations were initiated after

developing the hydrodynamics field for 50 time steps. The turbulence spectrum at

t = 0 and after 50 time steps are shown in Figure 3. The Reynolds number based
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on the Taylor microscale was approximately 5, Da was approximately equal to 1.5

and u'/S1, was of the order 0.53. This meant that we expect a thin flame with low

turbulence (i.e., the wrinkled flame regime).

_'e start reviewing the results by examining the flame structure. Figure 4 shows

the constant temperature surfaces for T = 302 ° and T = 314 ° (the unburned

temperature is 300 ° and the burned temperature is 315°). The surfaces are seen

to have a wavy topology consistent with what is expected in the wrinkled flame

regime. Figure 5 shows contours of constant temperatures in z-g planes taken at
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the 0, 1/4, 1/2, and 3/4 stations in the z-direction. Here the wrinkled structure is

more evident and the wrinkling seems to be occurring at several scales. The flame

thickness is found to vary with location. This variation is caused by the inclination

of the local flame front relative to the section plane. Thus the flame appears thicker

than it is along a normal to the flame front. The flame thickness in the thin regions

were found to be comparable to the thickness of the laminar flame calculated earlier.

At thirteen locations tested the flame structure was also found to be similar to the

laminax flame structure. This result agrees with the first-order solution derived

by Clavin and Williams (1979). However, their second-order solution modifies the

laminar profile.

Figure 6 shows the velocity vector field in z-y planes at the same z-locations as

Figure 5. In these figures the flame wrinkling appears for the most part to follow

the velocity field. We can also see that on the scale of the flame thickness the strain

rate is small. This qualitatively verifies that we axe in the thin flame regime.

The probability density function (PDF) for the reactant mass fraction is shown

in Figure 7 at various x-locations. These PDFs were generated by collecting data

from the homogeneous planes (y-z planes) at the specified • locations, dividing it

into 20 bins and averaging the data in each bin. The distributions are seen to be

qualitatively similar to the PDF of the laminar flamelet model proposed by Bray

and Moss (1977). According to this model the PDF consists of two delta functions

located at YA = 0 and YA = 1 which are joined by a region of low probability
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that has its PDF proportional to the inverse of the gradient of YA. We notice from

Figure 7 that, because the gradients on the cool side of the flame are small, the

probability density function tends to be higher at the large values of YA. There

is, however, a peculiar behavior of the PDFs at some of the z-locations where

we observe a maximum of the PDF at values of )_ of around 0.9. This probably

indicates that the wrinkling of the flame is not much larger than the flame thickness.

This is supported by the contour plots in Figure 5.

Next we will exanfine the dependence of the turbulent flame speed on u'. Figure 8

depicts the variation of A,u', Rex and the turbulent flame speed ST with time. The

laminar flame speed is also included for comparison. The hydrodynamic quantities

display the expected behavior i.e., u' and Rex decrease with time, while ), increases.

Hence, Da will increase with time which means that we remain in the wrinkled

flame regime for the duration of the calculation. The variation of the turbulent

flame speed with u' is shown in Figure 9. We find ST increasing with u' but the

increase is much slower than suggested by the commonly used formula

ST = Si, + c'u' , (4)
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Williams' equation;

where c' is a constant. Tabaczyski et al. (1974) use c' = 1 , Witze and Mendes-

Lopez (1986) suggest a value of 2.2. For other suggestions see zur Loye and Bracco

(1987). Our results are closer to the theoretically obtained formula given by Clavin

and Williams (see Williams 1985) for weak turbulence

1 (1 + V/1 + 8C(ut/SL)2)] 1i2ST = SL _
(5)

where c is a constant of order unity. This equation is also plotted in Figure 9 using

c = 1.2 to match the first data point. Within the range of our data the magnitude

of ST/SL given by equation (5) is fairly close to our calculated values. However,

the trend is not, indicating that ST probably depends on more than just u'. It is

interesting to note that in equations (4) and (5) and most other suggestions in the

literature, there is no dependence of ST/SL on heat release or Reynolds number

(there are some exceptions e.g., Abdel-Gayad and Bradley (1976) give an expression

that involves the Reynolds number). Hence the flame speeds calculated with the

DNS code should also be representative of flames with large density variation and

large Reynolds numbers. However, as implied earlier, the differences in the various

proposed equations for the flame speed may be due to not including all of the

relevant parameters on which the flame speed depends. We should try to investigate

these systematically.

Finally, the development of the mean temperature profiles is shown in Figure 10.

The profiles suggest that the turbulent flame thickness is about twice the laminar

flame thickness. We also observe that the flame thickness increases with flame

travel. This may be due to the increase of the turbulent length scale with time.
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Our plans to continue the work on this project include more analysis of the case we

have presented here. In particular, we will examine scales and structures relating to
the turbulent diffusion of the reactant mass fraction. We will also calculate the area

of the wrinkled flame front and compare this to the turbulent flame speed. Further

work in this area will include turbulent calculations with a mean strain-rate so that

we can examine the effects of anisotropy on flame propagation.
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Modeling of turbulent transport
as a volume process

By MARK J. JENNINGS ] AND THOMAS MOREL s

Introduction

One of the issues in turbulence modeling is the representation of turbulent trans-

port of Reynolds-averaged quantities, both mean values and turbulent statistics.

The process of turbulent transport is one of dispersion due to the fluctuating tur-

bulent motions, which span a wide range of spatial scales. In the current models

of turbulence, some of the transport terms are calculated from transport equations

for the terms themselves. Specifically, the turbulent transport of a quantity _ due

to velocity-_ correlations may be calculated from higher-order equations obtained

by manipulation of the _-equation and the momentum equation. However, each

such equation introduces additional transport terms due to velocity and pressure
correlations.

At any selected level of turbulence modeling, there remains a number of these

correlations, and those are almost universally being modeled by gradient diffu-

sion, analogous to the laminar diffusion, with an isotropic scalar diffusivity. More

recently, Rogers, Mansour and Reynolds (1987) have proposed a mode] which em-

ploys tensorial diffusivity for heat transfer. The analogy of turbulent transport with

laminar diffusion is only distant. This is in part because the seemingly random tur-

bulent motions responsible for the transport can be relatively large compared to

the scale of the entire flow region and thus they can communicate with adjacent

flow regions. Also, in strained flows these motions have preferred directions and

consequently their contributions are not isotropic.

The objective of this work has been to give consideration to an alternative class of

methods for the representation of turbulent transport, which would incorporate the

effects of (1) the surrounding finite volume, and (2) preferred lines of communication

within the flow. These methods, if successful, should have the potential of removing

the drawbacks of the current gradient diffusion models.

In a broader sense, all of the turbulence correlations appearing in the Reynolds-

averaged equations are the result of non-linear interactions of turbulent motions of

various scales_ Their modeling has traditionally followed the path of representation

in terms of ]o_al variables, be it mean gradients or other turbulence correlations.

This approacli _ has been moderately successful, although much work remains. It

is likely that modeling of terms other than turbulent transfer would also benefit

from the consideration of the surrounding volume and of the preferred directions

1 Illinois Institute of Technology

2 Integral Technologies

PRECEDING PAGE BLANK NOT FILMED



134 Jennings and Morel

of strained turbulence. In fact, some work along these lines has already been done,

e.g., by Miklavic and Wolfshtein (1987).

Conceptual model of turbulent transport

One concept for alternative description of turbulent transport is to represent it

as net convection by fluctuating turbulent, motions, which exchange small volumes

of fluid between neighboring points. It is assumed that one needs to consider only

points that are close enough to be able to influence each other directly. This is

based on the premise that the spatial extent of turbulent transport is controlled

by the extent over which the motions are coherent. That implies that the turbu-

lent transport of any quantity is directly linked to the coherence and dynamics of

the fluid motions. A further premise is that the influence of mean shear on the

turbulent transport of a scalar quantity _b (which appears in the governing equa-

tions of velocity-_b correlations as a consequence of manipulation of the momentum

equation) is accounted for indirectly, through the action of mean shear on the ve-

locity fluctuation field, resulting in its distortion, anisotropy, and preferred lines of

communications within it. The turbulent, transport of the scalar can then be de-

duced from the interaction of the distorted turbulent velocity field with the spatial

distribution (gradients) of the mean scalar _.

Assuming that. the above premises are valid, one may proceed to search for an

appropriate formulation of the transport term, which would properly represent, this

physical picture. Consider two small volumes, one centered on a given point x and

the other on some arbitrary point x' in the neighborhood of x. These two volumes

interact, and exchange fluid carrying the scalar. Based on the discussion above, we

propose to model the scalar transport in terms of the mean field q_ by

=C/[q,(x,t)-_(x',t)]XD v ri 1 d3 r (1)T¢_(x,t) L r 4_r 2g

where r = x - x', X is a dimensionless spatial function descriptive of the velocity

fluctuation field, V/L is the time scale of turbulent motions with V being a velocity

scale and L an integral length scale, D is a scalar function of r/L discussed below,

and r_/r is the direction cosine of the vector r in the/-direction. The factor 1/(4nr 2 )

is introduced to represent the decaying influence of a volume as the distance r

increases. The introduction of the direction cosine into the relationship implies that

the contribution to transport between any two given points in the flow is directed

along the vector connecting these points. The function D is included to represent

changes in the convected scalar during the transit time r = r/L due to diffusion.

The general nature of equation (1) is such that the transport calculated using that

expression can produce counter-gradient flux in certain types of non-homogeneous

flows. Furthermore, this term is in general non-isotropic (depending on the function

X) and thus is more general than commonly used scalar diffusivity models.

A key element in the model is the selection of the function X. Building on the

premises of this approach, it seemed worthwhile to investigate the usefulness of

basing this function on the two-point velocity correlation Q_ which correlates the
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velocity component along the vector r. Such a correlation can be shown to be

related to the commonly used two-point correlation Qij

= (2)

by a relation

Qrr - rirjQiJ
r2 (3)

The scalar Q,.,. is a function of the spatial position. In an isotropic flow this function

has spherical contours centered on the correlating point and its value decays along

any ray extending from the origin according to the longitudinal correlation function

f(r). In a shear flow this function is much more complex, as will be discussed below.

Two-point velocity correlations

Homogeneous shear flow

To test the ideas proposed above, advantage was taken of the available data pro-

duced through direct numerical simulations of turbulent flows at Stanford University

and at NASA-Ames. One such flow was the homogeneous shear flow calculated by

Rogers et al. (1986), specifically the flow C128U. Analysis was made of the two-

point correlations at dimensionless time St = 12. At that instant, the flow may

be characterized by Sq2/¢ = 11, q4/cv = 800, ut/v = 13, P/_ = 1.7, where S is

the mean shear rate dU/dy, q2/2 is the turbulent kinetic energy, _ is the turbulent

dissipation rate, P is the production rate, v is tile molecular kinematic viscosity,

and u_ is the effective turbulent kinematic viscosity. This is a fully-developed tur-

bulent, flow, albeit at fairly low Reynolds number as evidenced by the low value of

ut/u. The ratio of longitudinal length scale A1 to the computational grid spacing

in the x-direction was about 5, and tile computational domain spanned 128 nodes

in all three directions. The simulation included a cross-stream vertical gradient of

a passive scalar with molecular Prandtl number of 0.7.

Using tile data base, two-point velocity-velocity and velocity-scalar correlations

were obtained. The two-point ulul, ul_p, u2u2, and u2_b correlations are shown in

Figures 1-4 for the x-y and y-z planes through the correlating point. Inspection of

the contours shows a distinct similarity between the two types of correlations. The

ulq5 correlation appears to be strongly influenced by the ulul correlation. The u2_b

contours are somewhat similar to the u2u2 contours, although there also appears to

be some influence from the ulu2 correlation. This tends to support the view that

two-point velocity correlations are relevant to scalar transport.

An interesting, and perhaps surprising observation, is that the contours of the

U2U 2 correlation have no inclination, while the ulul and USU 3 correlation contours

are very strongly inclined in a direction that is consistent with the mean shear and

with the orientation of the flow structures (hairpins) that develop in the flow. This

surprising behavior of the vertical fluctuations has been previously observed in ex-

periments, e.g., in a boundary layer by Kovasznay et al. (1970) and in homogeneous
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FIGURE 1. Comparison of velocity-velocity and velocity-scalar correlations in a ho-

mogeneous shear flow with a vertical mean temperature gradient. Note compressed

x-scale. (a) x-V plane, ulul and (b) x-y plane, u15.
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FIGURE 2. Comparison of velocity-velocity and velocity-scalar correlations in a

homogeneous shear flow with a vertical mean temperature gradient. (a) y-z plane,

ulul and (b) y-z plane, u3_b.

shear layer by Townsend (1970). The contours of the ulu2 correlation, being re-

lated to both ul and u2, have an inclination which lies between the ulul and u2u2

inclinations.

The contracted correlation Q_r, defined in equation (3), is a linear combination of
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FIGURE 3. Comparison of velocity-velocity and velocity-scalar correlations in a ho-

mogeneous shear flow with a vertical mean temperature gradient. Note compressed

z-scale. (a) x-y plane, u2u2 and (b) z-y plane, u2¢.
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FIGURE 4. Comparison of velocity-velocity and velocity-scalar correlations in a

homogeneous shear flow with a vertical mean temperature gradient. (a) y-z plane,
u2u2 and (b) y-z plane, u2¢.

the individual velocity correlations. Its contours are shown in Figure 5 for the three

planes x-y, y-z, and x-z. It may be seen that this correlation is very different from

the individual components Qij. Its values are mostly positive with only very weak
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negative lobes. In the z-!/plane (Figure 5a) this correlation has a very distinctive

shape. This is partly caused by the fact that Q_, has a singular behavior at the

origin, where its value depends on the direction from which this point is being

approached. The butterfly-like shape seen in this plane is mainly produced by the

contributions from the Q12 and QzI correlations, and it is absent in the other two

planes. In the spirit of the discussion above, this shape of the correlation volume

may be interpreted as an indication of the preferred lines of communication set up

in a strained turbulent field. It is seen that the preferred communication is along a

direction close to the mean flow direction, while a very poor communication is set up

along a direction inclined about 70 degrees from the z-direction. This anisotropy

may be expected to have a major effect on turbulent transport and perhaps on

other processes as well. The correlation volume reflects the effects of the dominant

turbulent motions and should be consistent with their orientation and shape; in the

case of the homogeneous shear flow these are hairpin-shaped, and their relationship

to the correlation volume shape is not immediately obvious.

In the case of homogeneous shear flow equation (1) simplifies to

c /Tq_i = -_ _,jV Qrrrirj d___rr
r2

(4)

or

Tcki = -Dijcb,j • (5)

Evaluating the integral in equation (4) over the entire domain one obtains a

tensorial diffusivity Dij. The values calculated for this particular flow are given
below:

1.80 -0.23 0.05)
(Dij/D22)mode! = -0.23 1.00 -0.04

0.05 -0.04 1.00

6.5 -2.4 0.0)
(Dij/D22)°im_,la_ion = -1.1 1.0 0.0

0.0 0.0 1.8

The first of the two tensors is that calculated by the present model, the second

one has the values deduced by Rogers et al. (1986) from the direct simulation.

The model values are seen to exhibit correct trends, with high values of Dll and

with negative off-diagonal contributions D12 and D_1. However, the magnitudes of

the departures from isotropy are not predicted well. By contrast, scalar diffusivity

models contain only diagonal terms that are equal in magnitude.

Channel flow

To complement the data presented above, a brief study was made of a two-point

correlation in a channel flow simulation data of Kim, Moin and Moser (1987). The

Reynolds number based on wall friction velocity ur and channd half-width H was

180. The contours of the ulul, u_u2, u3u3 and ulu2 two-point correlations at
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distances of one-quarter and one-half H from the wall were computed. At the one-

quarter H location, ulul and tt3U 3 contours are stretched and inclined towards the

channel, wall. The u2u2 contours are seen to be affected by the presence of the

wall, especially those at lower correlation levels which are farther away from the

origin. This general behavior is also seen at the half H point, except that the wall

effects are diminished and some similarities with the homogeneous shear flow begin

to emerge.

Summary

An alternative type of modeling has been proposed for the turbulent transport

terms in Reynolds-averaged equations. During the Summer Program, one particular

implementation of the model has been considered, based on the two-point velocity

correlations. The model was found to reproduce the trends but not the magnitude

of the non-isotropic behavior of the turbulent transport. Some interesting insights

have been developed concerning the shape of the contracted two-point correlation

volume. This volume is strongly deformed by mean shear from the spherical shape

found in unstrained flows. Of particular interest is the finding that the shape is

sharply waisted, indicating preferential lines of communication, which should have

a direct effect on turbulent transfer and on other processes.
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Analysis of non-premixed turbulent reacting flows

By ANDY D. LEONARD 1 .AND JAMES C. HILL 1

Studies of chemical reactions occurring in turbulent, flows are important in the

understanding of combustion and other applications. Some situations, hypersonic

reacting flows for example, are difficult to study experimentally and will benefit from

direct numerical simulations. Current numerical methods are limited in their ap-

plications due to the numerical resolution required to completely capture all length

scales but, despite the fact that "realistic" combustion cannot be solved completely,

numerical simulations can be used to give insight into the interaction between the

processes of turbulence and chemical reaction (Jou and Riley, 1987).

The objectives of this work were (1) to investigate the effects of turbulent motion

on the effects of chemical reaction to gain some insight on the interaction of tur-

bulence, molecular diffusion and chemical reaction to support modeling efforts, and

(2) to develop efficient strategies for evaluation of multi-point probability density

functions (pdfs) and develop other post-processing tools. For lack of time, only the

first objective was actually addressed.

A direct turbulence simulation spectral code (Rogallo 1981) was modified to in-

clude the effects of chemical reaction and applied to an initial value problem of

chemical reaction between non-premixed species. Preliminary results show the dis-

sipation microscale of the scalar variance to be independent of Damkohler number.

The influence of hydrodynamics on the instantaneous structure of the reaction was

investigated.

The specific problem under consideration is the isothermal, irreversible chemical

reaction of two initially segregated species, of the type

A+B_ P (1)

occurring in a decaying homogeneous isotropic turbulent flow. The concentration

of one reacting species follows the mass conservation equation

OA

O---t+ u. VA = DAV2A -- KAB (2)

and the turbulent velocity field obeys the Navier-Stokes equations

OU , 1

0--t-+ u- Vu = --Vp + _,V2u. (3)P

The reaction-rate coefficient, K, is constant, and so the situation can be thought of

as an isothermal diffusion flame. The turbulent velocity and the concentration of

1 Department of Chemical Engineering, Iowa State University
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FIGURE 1. Schematic diagram of initial conditions for reactants A and B.

chemical species were all calculated using direct numerical simulation. A pseudo-

spectral method was used with aliasing errors removed. It was necessary to add

the term for chemical reaction in equation (2) to an existing program for the direct

simulation (Rogallo 1981; see also Lee and Reynolds 1985). The Courant-Freidricks-

Lewy stability criterion was appropriately modified to include the effect of reaction

on the scalar field equation, and some modifications were needed to obtain diagnos-

tics for the scalar field.

Two calculations were performed on a mesh of 64xf4x64 points. Three velocity

components and four scalar components were calculated in each simulation, includ-

ing the reactant species (denoted as A and B), the product species (denoted as P)

and the non-reacting species (denoted as 6'). Two different values of the reaction-

rate coefficients were used in the study. The Damkohler numbers (dimensionless

reaction-rate coefficients) based on the initial mean reactant concentration, turbu-

lence intensity and the integral velocity length scale were 10 and 2 for the two runs.

The Schrnidt number for all species was unity. The initial conditions for the reac-

tant species are illustrated in Figure 1. Initial values of A and C' were identical. The

turbulence was freely decaying from an arbitrarily chosen initial energy spectrum.
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FIGURE 2. Reaction term in equation (2), KAB, for t = 1.1 and Da = 10. The
contour interval is 0.2.

The initial Reynolds number based on the Taylor nficroscale was 24. Velocity fields

were initialized using random numbers scaled to fit a given energy spectrum that

was nearly Gaussian in form. The simulations were carried out for 400 steps for

the case with the higher reaction rate and for 300 steps for the case with the lower
reaction rate.

Modification of the program, small-scale calculations to verify the changes, and

running the 64x64x64 calculations required three weeks to complete. Several data

sets were saved with the full set of Fourier coefficients for the scalar and velocity

fields, so that the IRIS workstation and interactive graphics programs could be used

to examine the spatial dependence of the fields in physical space at a single value

of time. Many of the results are only qualitative at this writing.

Our proposal was to examine the local scalar dissipation rates and the local re-

action rates to determine the influence of vorticity or rate of strain on the reaction

and the structure of the scalar field. Consequently, the region where the reaction

occurs was the focus of attention. The location of this region is marked by the value

of the term KAB in equation (2) and is clearly shown in Figure 2. The region was
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FIGURE 3. Surface where the conserved scalar A - B equals zero.

also marked by the product species concentration and high values of the magni-

tude of the gradients of reactant species concentrations as the reaction was nearly

diffusion limiting, due to the high reaction rates. The reactant species, therefore,

remain highly segregated over the course of the reaction with sharp gradients in

the reaction zone. The thickness of the zone is about four grid points at the higher

Damkohler number. The reaction zone is distorted by the turbulent motion and

the reaction rate and product concentrations are not uniform within the reaction

zone. The regions of high reaction rate correlate only roughly with regions of high

product concentration.

An attempt was made to determine the influence of the hydrodynamics on the

structure of the reaction zone. Surfaces at which the concentration of the conserved

scalar A - B equals zero appear to be good indicators of the location of the reaction
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FIGURE 4. Vortex lines passing through points near one of the finger-like structures

in Figure 3.

zone. These surfaces show fingers of reactant pushing into the reaction zone (Figure

3). Vortex lines passing through a group of points located near one of the fingers

are shown in Figure 4. The vortex lines are suggestive of the idea that a vortex

ring is producing the finger by eduction, but the evidence is inconclusive and needs

more extensive investigation.

The results of the simulations supported earlier findings (Leonard and Hill, 1987)

that the dissipation mieroscale of the concentration fields is not greatly affected by

the Damkohler number (Table 1). Modeling the effects of dissipation is a weakness

of some theories, as the process is not local. These findings suggest that diffusive

effects can be treated reasonably well by correctly modeling an equivalent non-

reacting flow.

The work done at the summer program was a beginning of an effort to look closely

at the influence of hydrodynamics on the instantaneous structure of the reaction.

Previous work (Leonard and Hill, 1987) had looked primarily on volume-averaged

quantities to test closure theories (Toor 1969; Patterson, 1981). The effect of strain

rate on the reaction has yet to be investigated. Further work is planned for analysis
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Da hA )_A

te = 0 te = 1

0 1.46 1.02

2 1.46 1.00

10 1.46 0.94

Da = KAou'o/Lo A2A= 6a_/IVal _ te = Lo/u'o

Table 1. Effect of Da on dissipation microscale of reactant A.

of the simulations performed during the CTR summer program and for additional

simulations to study the effects of parameters such as different molecular diffusivi-

ties for reactant species, non-stoichiometric ratio of reactant concentrations, steady

(forced) turbulence, external mean shear or strain, and different initial velocity
conditions.
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A statistical investigation of the
single-point pdf of velocity and vorticity

based on direct numerical simulations

By M. MORTAZAVI 1, W. KOLLMANN ] AND K. SQUIRES 2

Vorticity plays a fundamental role in turbulent flows. However, most closure

models presently available do not treat vorticity in an explicit fashion. Hence it is

suggested to investigate the dynamics of vorticity in turbulent flows and the effect

on single-point closure models. The approach is to use direct numerical simulations

of turbulent flows to investigate the pdf of velocity and vorticity.

The pdf of velocity and vorticity is governed by a transport equation, which

contains terms describing the dynamical processes of vortex stretching, viscous

dissipation, and the effect of fluctuating pressure gradients as conditional fluxes

in velocity-vorticity and physical spaces. These fluxes, together with appropriate

boundary conditions, determine the evolution of the pdf from an initial state. Anal-

ysis of these fluxes shows that they cannot be represented in terms of the single-point

pdf only, but require structural information in terms of two-point pdf's or two-point

correlations. A direct way of getting information on the conditional fluxes is the

statistical evaluation of results obtained from direct numerical simulations of tur-

bulent flows, presently possible only at relatively low Reynolds numbers. This was

carried out for a homogeneous shear flow.

Consider a point (x,t) in a turbulent flow field. Let vi(x,t) and wi(x,t) be a

realization of velocity and vorticity at the chosen point. The quantity (Lundgren
1967)

] - _(v(x, t)- v)_(w(x, t)- w) (1)

denotes the fine-grained pdf of velocity and vorticity at (x, t). The expectation of

] is then the pdf at (x, _),

/(v,w;x,t) -< ] >, (2)

where < > denotes an ensemble average. The fine-grained pdf is conserved

0 0 (0,_,,_]) = o,o,1+ (O,v,])+ (3)

where Oi = O/Oxi and Ot = O/Ot. Averaging of (3) and the use of the balances for

an incompressible Newtonian fluid, in the absence of body forces, lead to the pdf

transport equation:

1 Dept. of Mech. Engng., University of California, Davis

2 Dept. of Mech. Engng., Stanford University
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0 _ 0

ow_ow(< wjvio_w_l... > f)- _-_(< f_l... > f)

0
--'ijk-_ii(< O_fkl... > f), (4)

where.., denotes the condition (v = V,w = W) and Sit =- ½(Oivj + Ojvi) denotes

the rate of strain.

This transport equation contains three dynamically different groups of terms.

The conditional flux of f due to the fluctuations of the pressure gradient

1

F_-< "-0_vlv= V,w = W > (5)
P

acts on f in velocity space only, since the vorticity transport equation does not

contain the pressure in explicit form. This implies that

lim Fif = 0
IVl--*o_

no matter what value W for vorticity is considered. In this preliminary report, we

will focus our attention on Fi.

The conditional fluxes caused by the fluctuating pressure gradient, vortex stretch-

ing and viscous stresses are functions of the point (x,/) and the conditioning vari-

ables (V, W). Hence, they are functions of up to ten independent variables. Conse-

quently, we consider conditional expectations with increasing number of conditions

in order to begin with a manageable number of independent variables. Integration

of equation (5) over vorticity space leads to

f Fi(V,W)f(V,W)dW = fV(v) f Fi(V,W)f(WlV)dW

and thus

where

Fv(V)fv(v) = f Fi(V,W)f(V,W)dW,

F_(V;x,t) = f FdV, W;x,t)f(WlV;x,t)dW
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denotes the conditional flux in velocity space irrespective of vorticity and f(WlV)

the conditional pdf of vorticity given velocity. Then,

=< = V >. (6)
P

Integration over parts of the velocity space leads furthermore to expectations

conditioned with a single variable,

F/(Vj;:,,t) =< a-O,plvj = >.
P

(7)

These quantities are most easily accessible to numerical evaluation and they con-

stitute, therefore, the starting point for the investigation.

The direct simulation of a homogeneous linear shear flow carried out by Rogers

and Moin (1987) and Rogers, Moin and Reynolds (1986) (case C128U12) was the

data base for the evaluation of the pdf's and the conditional fluxes. This was done in

three steps: (1) conditioning with one velocity component; (2) conditioning with one

vorticity component; (3) conditioning with two variables (two velocity components,

one velocity and one vorticity component or two vorticity components).

In the plots that follow, iso-probability contour lines are equally spaced, with

high values near the center. The important aspect is the shape of the contour lines,

and so the flow-dependent levels and coordinate ranges are omitted. Samples are

collected in discrete bins, which produces the rather jagged look to the diagrams.

The plotting package used plots the curves over the full range of velocity fluctuation

values encountered, ranging from the minimum to the maximum. The abscissa and

ordinate range from their mininmm to maximum values so their zeros are not exactly

in the center of the figure. At each extreme there is only one data point, and hence

no conclusion can be drawn on the statistical behavior there. Areas with inadequate

statistical sample, and hence highly uncertain values, are shaded.

The joint pdfs of the pressure-gradient component 01p and one velocity compo-

nent V1,1/'2, or 1/3 are shown in Figures 1-3. The skewed shapes of the iso-probability

contours show that 01p is weakly correlated positively with V1 and more strongly

correlated negatively with V2; the correlation with V3 is zero by symmetry. The

conditional pdfs of Opl are shown in Figures 4-6. They show that the conditioned

probabilities are of the same form at different values of Vi, with a mean value (ex-

pectation) that varies with the conditioning velocity. The conditional expectations

< 01p]vi > are shown in Figure 7. Note that they are linear in the velocity compo-

nents over the range of adequate sample, an observation of importance in modeling.

Figure 8 shows contours of the expectation of 01p conditioned on both 1/'1 and V2.

Note that these contours are straight in the region of adequate sample, consistent

with the linear behavior found in Figure 7, and that the rate of change with respect

to each velocity component is independent of the velocities.

The joint pdfs of pressure-gradient components and single vorticity components

show no discernable correlation between the two. Consequently, the expectation

values of the fluctuation pressure gradient, conditioned on the local fluctuation
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vorticity, are essentially zero. For example, Figure 9 shows the contours of the

expectation of the streamwise pressure gradient O]p conditioned on the velocity

component V2 and the streamwise vorticity component 1411. Note that the expecta-

tion is independent of vorticity. Figure 10 shows the expectations of the streamwise

pressure gradient, conditioned on the vorticity components I47] and W2. The varia-

tions at either end are due to inadequate sample, and the flat portion in the middle

is at zero, indicating no dependence on the vorticity.

In summary, this preliminary study of homogeneous shear flow has shown that

the expectation of the fluctuating pressure gradient, conditioned with a velocity

component, is linear in the velocity component, and that the coefficient is indepen-

dent of velocity and vorticity. In addition, the work shows that the expectation of

the pressure gradient, conditioned with a vorticity component, is essentially zero.
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Overview of Research by the
Reynolds Stress Modeling Group

It is well recognized that full turbulence simulations will be limited for the forsee-

able future to simple fundamental flows. In order to compute flows of engineering

interest, turbulence models will have to be used in formulating the governing equa-

tions. These models are a pacing item in the development of a computational fluid

dynamics capability• Traditional model development had relied on formulating a

closure model, then the model is used in a simulation to assess its validity. No

direct experimental measurements are available for the pressure-strain, because of

the difficulty in measuring these terms, and therefore no direct assessment of the

models was possible. Direct simulation data can be used to compute the terms that

need to be modeled and direct comparison with closure formulas can be achieved.

This process should lead to a more systematic way of testing models. The objectives

of the Turbulence Modeling Group were to develop and test closure models.

The invited participants in the modeling group were:

Prof. P. Bradshaw (Imperial College)

Prof. J. G. Brasseur (Clemson University)

Dr. J. Y. Chen (Sandia National Laboratories)

Prof. H. Ha Minh (IMF-CNRS)

Prof.

Prof.

Prof.

Dr. J

Prof.

J. C. Hunt (Cambridge)

C. G. Speziale (ICASE; NASA Langley)

D. Vandromme (CORIA-CNRS)

• Weinstock (NOAA/ERL/Aeronomy Laboratory)

M. Wolfshtein (Technion)

The local participants were:

Dr. M. J. Lee (NASA Ames)
Dr.

Dr.

Mr.

Dr.

Mr.

Dr.

Dr.

S. Lele (NASA Ames)

N. N. Mansour (NASA Ames)

U. Piomelli (Stanford University)

M. W. Rubesin (NASA Ames)

K. Shariff (NASA Ames)

T.-H Shih (Center for Turbulence Research)

J. R. Viegas (NASA Ames)

As expected, most of the work was devoted to the assessment of existing turbu-

lence models. While some of this work had already been carried out by investigators

at Ames (e.g. Mansour, Kim and Moin, 1987, to appear in J.F.M.) for the model of

Launder, Reece and Rodi (1975), the summer school provided an opportunity for

various other modelers to test their models against full turbulence simulation data.
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Weinstock & Shariff evaluated the theory of Weinstock (1981, 1982, 1985) for

the slow term. They found that many of the features of the slow term are repro-

duced by the theory. The data indicates that the "Rotta" coefficient varies between

component and changes significantly with strong temporal variations of the kinetic

energy; these features are well predicted by the theory.

Wolfshtein & Lele studied the structure of two-point correlations (velocity-velo-

city, velocity-scalar, and scalar-scalar) with view towards improving turbulence

models. They tested the linear two-point correlation model of Naot, Shavit &

Wolfshtein (1973) and found that it is necessary to relate the two-point correlations

not only to the Reynolds stresses, but also to all mean velocity and mean scalar

gradients.

Shih, Mansour & Chen evaluated non-linear models for the return and the rapid

pressure-strain terms (Shih and Lumley, 1985, and Shih, Mansour & Moin, 1987,

to be published). In general, the models of the pressure strain term performed well

for the cases of homogeneous turbulence under axisymmetric contraction, but all

models were marginal for the cases of homogeneous turbulence under plain strain.

In addition to testing the models by direct comparison, Shih, Mansour & Chen

used Reynolds stress models to predict the homogeneous shear case of Rogers, Moin

and Reynolds (1987). Rubesin, Viegas, Vandromme, and Ha Minh coded a Reynolds

stress model to compute channel flows at different Reynolds numbers. It was found

that existing models that are linear in the anisotropy tensor perform poorly for these

cases, while second-order models perform well for the homogeneous shear case but

were not tested for the channel cases.

In addition to model testing, efforts were devoted by Bradshaw, Mansour, &=

Piomelli to testing certain approximations to the pressure strain term. In particular,

the usual approximation to the rapid term where the local mean velocity gradient

is used outside the integral solution of the Poisson equation was tested using the

channel data. It was found that away from the wall this approximation works well,

but close to the wall it will fail. The reason for the failure is attributed to the

fact that close to the wall the velocity gradient varies rapidly as compared to the

correlation length of the fluctuating velocity gradients.

A detail study of a homogeneous shear flowfield was carried out by Brasseur, &

Lee where the intercomponent energy transfer by pressure-strain-rate was investi-

gated. It was found that the rapid and slow parts of the turbulent pressure were

uncorrelated; providing strong justification for current modeling procedures. In ad-

dition, instantaneous events of high transfer regions were studied in details. These

events were found to be highly localized in space and are imbedded in regions of

concentrated vorticity.

In order to gain insight into the effects of rotation on the dissipation rate, Speziale,

Mansour & Rogallo carried a direct numerical simulation of decaying isotropic tur-

bulence in a rapidly rotating frame. It was found that the primary effect of rotation

is to shut off the energy transfer so that the turbulence dissipation is substantially
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reduced. It was found that the anisotropy tensor remains essentially unchanged

while the energy spectrum underwent a pure viscous decay. Rapid distortion the-

ory analysis reveals that the rate of change of the vorticity field is O(f_) so that

no Taylor-Proudman reorganization of the flow to a two-dimensional state was ob-

served. Suggestions are made towards including the effects of rotation on the dissi-

pation rate.

Finally, a recent mixing length formula proposed by Hunt et al. (1987) was

tested by Hunt, Spalart & Mansour, for a wide range of turbulent wall-bounded

shear flows. It was found that the formula works well for all y+, but fails in the

neighborhood of regions where dU/dy = O.
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On Local Approximations of the
Pressure-Strain Term in Turbulence Models

By P. BRADSHAW 1, N. N. MANSOUR 2 and U. PIOMELLI 3

The reason for the success of the approximation that uses the mean velocity

gradient OU/Oy outside the integral solution of the Poisson equation for pressure,

and sets the gradient equal to its value at the point where the pressure is being

calculated, has been explored. This approximation is implicit in most existing

turbulence models, where the pressure-strain terms are assumed to be functions of

local variables rather than of the proper spatial integrals. Direct simulation data

for the channel were used to evaluate spatial correlations of pressure and velocity

gradients. The results show that a correlation coefficient of about -0.5 between

the rapid pressure and its Laplacian (proportional to Ov'/Oz); this is in favor of

the local assumption. Analysis of the solution to the Poisson equation indicates

that the assumption will be valid when the mean velocity gradient varies slowly as

compared to the correlation length of the fluctuating velocity gradients.

1. Introduction

The pressure-strain "redistribution" terms in the Reynolds-stress transport equa-

tions, which are mean products of the pressure fluctuation and various components

of the fluctuating rate of strain, have received much attention from turbulence mod-

elers for two reasons: first, the pressure-strain terms in the shear stress equations are

the largest of the terms that need to be modelled in those all-important equations;

secondly, little experimental data is available to properly assess the models.

In an experimental setup, pressure fluctuations within a boundary layer cannot be

measured with any assurance of accuracy, because the velocity fluctuations induce

pressure fluctuations on any solid probe inserted in the flow, and these spurious

fluctuations are usually larger than those in the undisturbed flow. Using the in-

stantaneous velocity field in the entire domain, turbulence simulations (numerical

solutions of the full time-dependent Navier-Stokes equations without any modeling
approximations) can be used to deduce statistics of measurable and of "unmeasur-

able" quantities such as those we will discuss in the next section. We shall discuss

in this paper an approximation to the pressure-strain term which is commonly used

in modeling the Reynolds-stress transport equations.

1 Imperial College

2 NASA Ames Research Center

3 Stanford University
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2. Local approximation to the pressure

For an incompressible flow the fluctuating pressure can be obtained from the

velocity field by solving the Poisson equation

02P - 2 0Ui Ou_ I Ou_ Ou_ Ou_ Ou_ _ (la)

O_jO_,j _ OX i _ OZj OX i OXj OZ i ]

with the boundary condition at the walls

Op = l___O_v ' (lb)
Oy Re Oy 2"

Equation (la) shows that any correlations of the pressure with other fluctuating

quantities will have a part proportional to the mean velocity gradients OUi/Oxj

and a part depending only on velocity fluctuations. These are called the "rapid"

and "slow" parts respectively, because only the former will respond at once to a

change in the mean velocity field. An inhomogeneous boundary condition makes

the split less obvious. However, for the case of the fully developed channel the

volume integrals of each of the terms on the right hand side of (la) will integrate

to zero and pressure in this case can be split in three parts: the rapid pressure pl,

which satisfies

02p I _ 2 0Ui Ou_ (2a)

OxjOxj Oxj Ozi

with the boundary condition at the walls

pl
-0; (2b)

0y

the slow pressure p2, which is the solution to:

]
(3a)

with the boundary condition at the walls

aPl O; (3b)
oy

and, finally, the Stokes pressure pS, which is the solution to Laplace's equation with

the boundary condition (lb) at the walls.

The pressure-strain terms that appear in the Reynolds stress equations are linear

in p, so that the total term will be equal to the sum of the rapid pressure-strain, slow
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FIGURE 1. Pressure-strain term in the -_-_ transport equation.

pressure-strain and Stokes pressure-strain. The solution of (2a) with the boundary

condition (2b) at the walls is

p] _ 1 Iv OUi Ou_4rr 2 0zj Oxi
Gdl; (4)

in which G is Green's function with homogeneous Neumann boundary conditions at

the walls. Note that most modelers neglect the surface integral terms that should be

added to (4) if non-homogeneous Neumann conditions are used for the pressure. The

use of the homogeneous boundary condition (2b) at the walls for the rapid pressure

is consistent with (4) and the approximation used by the modelers. Although, by

(4), the rapid pressure is an integral of the weighted mean velocity gradients over

the entire domain, in modeling the assumption is often made that pl depends only

on the local mean velocity gradient, which allows one to take the mean velocity

gradients outside of the integral in (4) to yield the following approximation for the

pressure:

pB 1 _ OUi Ou_ 'd

Direct experimental measurement of either p] or pB is impossible, but the use

of direct simulation results allows us to test the approximation (5) directly by

computing the integrals in (4) and (5) and comparing the approximate value pB with

p]. The purpose of the present paper is to examine the results of this comparison

for channel flow at low Reynolds number.

3. Results

The results of the direct numerical simulation of fully developed channel flow at

Re,. = 180 (Kim, Moin and Moser, 1987) were used to compute all the statistics

presented in this work.
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FIGURE 2. Two point correlation of the rapid-pressure term with Ov/Oz.

Figure 1 shows the contribution of the rapid pressure-strain term in the -u'v'

transport equation. All results are normalized by pub�v: on this scale the maximum

rate of production of turbulent energy, which occurs where r = r_/2, i.e. at about

y+ = 12, is 0.25. Note that the plotted terms are negative if -u'v' is being reduced

and positive if it is being increased by the pressure-strain redistribution.

The accuracy of the local approximation to the pressure-strain terms is sur-

prisingly good: differences between the exact and approximate values are gener-

ally within the scatter of the statistical averaging, except in the viscous sublayer

(y+ < 30). The rapid pressure-strain contribution to the other Reynolds stress

transport equations shows similar trends.

To further investigate the reasons for the success of the approximation outside of

the sublayer, as well as to ascertain the causes of its failure inside it, we examined

the correlation coefficient between the rapid pressure pl and various components of

the fluctuating strain-rate tensor for varying distances from the wall.

The most noticeable feature of the simulation results is the high correlation be-

tween pressure and velocity gradients. In particular, the coefficient of correlation

between pl and Ov'/Oz (Figure 2) is numerically as large as 0.5. This implies a

correlation coefficient of -0.5 between the pressure and its Laplacian. The rela-

tively high value for pl is noteworthy. It is not high enough to legitimize the pB
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FIGURE 3. Two point auto-correlation of the rapid-pressure.

approximation directly, but it suggests that the rapid pressure is not so dependent

on contributions from distant parts of the flow as its governing Poisson equation

nominally implies. A demonstration of this dependency is the rapid increase of

the length scale of pl near the channel centerline, which can be inferred from the

auto-correlation of pZ Figure 3. Near the centerline the source term in the Poisson

equation for pl, being proportional to the mean shear, vanishes; contributions to p_

on the centerline, therefore, must necessarily come from regions off the centerline,

and have their high wavenumber parts attenuated by distance.

For homogeneous flows in the z and z directions, the pressure-strain term can be
written as follows:

Substitution of (4) into (6) gives

' f?£ " "7
OUt . t

-_x (z - z',y',z - z') COu_(z,y,z)G(x',y,y',z')dxdzdx'dz'dy '
Oxj

(7)
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whereas the local approximation (5) yields

o.,_ 1 O0

Ov' ,, ,)
-_z (z - x ,y ,z - z -_zj(:c,y,z)G(x',y,y',z')dz'dz'dxdzdy'.

(8)

The two inner integrals in (7) and (8) represent the two-point correlation between

Ov(y')/Ox and Ouj(y)/Ozi, weighted by Green's function G, as a function of y and

y'. This correlation can be expected to vanish as y - y' increases, since Green's

function decreases as y - y' increases and the velocity gradients are not correlated

over large distances. As long as the length scale of this correlation is small with

respect to the length over which the mean shear can be considered constant, the

local approximation will hold. In the logarithmic region the mean shear varies

slowly (02U/Oy _ ..- 1/y 2 ) and the local approximation holds• At the sublayer edge,

where the velocity gradient changes significantly, this is not true and the local

approximation fails.

4. Conclusions

The results of numerical simulations of turbulent channel flows have been used to

exanfine the validity of the local approximation of the pressure-strain term in the

Reynolds stress transport equation.

Outside of the viscous sublayer the local approximation compares very well with

the exact pressure strain. This agreement is due, at least in part, to the high

correlation between the rapid pressure and its Laplacian, which suggests that only

the nearer parts of the flow contribute to the rapid pressure at a point.

In the viscous sublayer the distance over which the mean shear can be considered

constant is comparable to the length scale in the normal direction of the correlations

of velocity gradients, leading to failure of the local approximation.
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Local Structure of Intercomponent Energy
Transfer in Homogeneous Turbulent Shear Flow

By JAMES G. BRASSEURt AND MOON J. LEE_

Intercomponent energy transfer by pressure-strain-rate was investigated for ho-

mogeneous turbulent shear flow. The rapid and slow parts of turbulent pressure

(decomposed according to the influence of the mean deformation rate) are found

to be uncorrelated; this finding provides strong justification for current modeling

procedure in which the pressure-strain-rate term is split into the corresponding

parts. Issues pertinent to scales involved in the intercomponent energy transfer are

addressed in comparison with those for the Reynolds-stress and vorticity fields. A

physical picture of the energy transfer process is described from a detailed study

of instantaneous events of high transfer regions. It was found that the most signif-

icant intercomponent energy transfer events are highly localized in space and are

imbedded within a region of concentrated vorticity.

1. Introduction

Statistical quantities in turbulent flows have underlying them local, random

events whose dynamical evolution determines the structure of the average. Here,

event refers to a local concentration of a statistical quantity in an instantaneous

turbulent field and significant events are those which provide major contributions

to the average.

The pressure-strain-rate term is the most controversial in current modeling pro-

cedure for the Reynolds-stress transport. The poor understanding of the role played

by pressure in intercomponent energy transfer is in part for want of reliable data

from laboratory measurements of fluctuating pressure. With the advent of super-

computer, 'data' from full turbulence simulations of building-block flows such as

homogeneous turbulence are now available. In this paper, we analyse significant

events associated with the intercomponent energy transfer by interaction between

fluctuating pressure and strain rate in homogeneous turbulent shear flow.

Homogeneous turbulence is chosen for the present study due to the unambiguous

statistical description of intercomponent energy transfer as the correlation between

the fluctuating pressure and strain rate. In this study, we consider those local events

which do not average to zero. Velocity times pressure-gradient, which appears in

the instantaneous Reynolds stress equation, may be written as the sum of transport

and trace-free terms. In homogeneous turbulence, the trace-free term (pressure-

strain-rate) alone survives on the spatial average due to the requirement of the

t Department of Mechanical Engineering, Clemson University, Clemson, SC 29634
NASA-Ames Research Center, Motfett Field, CA 94035
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translational invariance. In inhomogeneous turbulence, the split of the velocity-

pressure-gradient is not unique (Lumley 1975). We hope to extend the inquiry in

the future to homogeneous turbulence subjected to irrotational mean strains and

to inhomogeneous wall-bounded turbulence.

2. Preliminaries

The transport equation for the Reynolds-stress tensor ui_j in homogeneous tur-

bulence is given by (Lee & Reynolds 1987)

dRij _ Pij + Oij + Tij - Dij (1)
dt

where Pij = -(SikRjk + SjkRik) is the production-rate tensor, Oij = --(f_ikRjk +
2

QjkRik) the kinematic rotation term, Tij = _ _ the pressure-strain-rate term and

Dij = 2 v ui,kUj,k the 'dissipation-rate' tensor (u and p are the fluctuating vector

velocity and pressure, respectively; an overbar denotes a statistical average, repeated

indices imply summation and a comma followed by an index means differentation).

i U _(Ui,j Uj,i) are tile mean strain-rate andHere, Sij = _( i,j -J- Uj,i) and Qij = z

rotation-rate tensors, respectively, and ._ij is the turbulent strain-rate tensor. Notice

that the kinematic rotation and pressure-strain-rate terms are trace-free (Oii : 0

and Tii = 0), and hence they do not contribute to production of the turbulent

kinetic energy. These terms represent intercomponent transfer of turbulent kinetic

energy by the mean rotation rate and by interaction between fluctuating pressure

and strain rate, respectively.

For homogeneous shear flow with mean velocity U = (Sy,0, 0), equations for the

component energy can be written as

d __

--u 2 = - S
dt

d-_ = _ S_-_
dt

d--
--W 2 =
dt

d

dt

- S_-_ + Tll - Dlz,

+ S _-_ + T22 - D22,

+ T33 - D33,

S-- -- S

9.(u, + v,) + 7 - + T,, - D,,,

(2)

where S = dU/dy is the imposed 'shear rate' uniform in space and constant in time._

Turbulent shear flow with unidirectional mean velocity has the characteristic that,

on the average, turbulent kinetic energy is produced by the mean strain rate in

the streamwise component u as much as in the gradient-direction component v

(i.e. Pn = P22 = -S_-_), and the kinematic rotation term rotates the turbulence

structure in the zg-plane by transferring energy -S_-_ from v-component to u-

component. The principal axes of the production-rate tensor are aligned at 45 °

t For notational convenience, we occasionally shift from (zl, z2, za) and (ut, n2, an) to (z, y, z)

and (_, v,w).
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with those of the mean strain-rate tensor, stretching the principal ellipsoid of the

Reynolds-stress tensor, while the kinematic rotation term is perpendicular to the

Reynolds-stress tensor, only tilting the principal ellipsoid.

It is suggested by experimental measurements (Harris, Graham & Corrsin 1977;

Tavoularis & Corrsin 1981) and numerical simulations (Rogallo 1981; Rogers, Moin

& Reynolds 1986; Lee, Kim & Moin 1987) that homogeneous turbulent shear flow

approaches an asymptotic growth state in which most turbulent kinetic energy is

concentrated in the u-component, followed by w, then v. The u-component loses

energy to those in the spanwise (w) and gradient directions (v) through the pressure-

strain-rate correlations: T11 < 0, T22 > 0 and T33 > 0. Examination of the process

by which the pressure-strain-rate redistributes energy between components and

the mechanism by which the spanwise component receives the greater share is the

primary purpose of this study.

The equations for fluctuating momentum flux (uiuj), which lead to (2) on the

average, contain local products of fluctuating pressure and strain rate which by

continuity sum to zero at a point (psii = 0). The pressure-strain-rate term may

therefore be associated with local as well as average intercomponent transfer of

kinetic energy. The role of fluctuating pressure as causing the local transfer of

kinetic energy between components can be observed more clearly in the instanta-

neous Fourier-transformed equations; pressure alters the directional distribution of

the energy associated with individual Fourier modes without modifying their energy

content (Batchelor 1953, §5.2).

The present investigation makes use of the full simulation of homogeneous tur-

bulent shear flow (Rogers el al. 1986). The simulation was carried out by using a

pseudospectral code developed by Rogallo (1981) with periodic boundary conditions

on a grid with 128 × 128 × 128 node points. Run R128 (vid. Rogers et al.) was

analysed for fields at fl = 4 and 8 (_ = St is the total shear). The run was made

by imposing a homogeneous shear rate on an initially isotropic turbulence with an

energy spectrum E(k) of a top-hat profile. As the flow developed, reasonable values

of velocity-derivative skewness were attained and the largest scales approached the

size of the computational domain near _ = 16. The Taylor-microscale Reynolds

number ranged from 43 to 74 for _ = 4-8, and the ratio of turbulence time scale to
1

that of the mean field (Sq2/e where q2 = Rii and e = 5Dii) increased from 5.4 to
8.8 between fl = 4 and 8.

3. Characteristics of rapid and slow pressures

The Poisson equation for fluctuating pressure in homogeneous shear flow

1
-- V2p = 2 S u_,l + ui,juj,i (3)

P

can be decomposed into two parts, rapid and slow pressures:

1 1
-- V2p_ = 2 S u2,1 and - - _72ps = Ui,jUj, i. (4)

P P
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FIGURE 1. The hatched area in the one-eighth (1/8) of the whole computational

domain indicates the xy-plane over which the two-dimensional contours in figures

2, 3 and 5 are displayed. The streamwise extent of this 64 × 64 × 64 subdomain is

twice those in the spanwise and gradient directions.

From this decomposition it is apparent that the rapid pressure responds directly to

the mean velocity gradient, whereas the slow pressure is affected only indirectly by

the mean, via the fluctuating velocity gradients.

In accord with this, the pressure-strain-rate term may be separated into rapid

and slow parts:

Tij + (5)

where

Hit = 2 2- p, sij and _lfij = - pssi-----_. (6)
P P

In Reynolds-stress transport closures (e.g. Launder, Reece & Rodi 1975; Lumley

1978) these terms have been modeled separately, the slow pressure-strain-rate term

typically with a 'return-to-isotropy' model. Order-of-magnitude arguments would

suggest that the slow pressure resides in scales of the same order as the energy-

containing eddies and the rapid pressure in somewhat larger scales, albeit it is not

obvious in what scales the pressure-strain-rate events are likely to reside.

At an earlier time (/3 = 4), the rapid pressure variance p2 is 70% of the complete

pressure variance p-5 and reaches 87% at a later time (/3 = 8), indicating increasingly

dominant contribution of the rapid part to the complete pressure fluctuations._

These figures compare with values in turbulent channel flow (e.g. Kim, Moin&

Moser 1987) of 50% in the sublayer to 30% outside (P. Bradshaw 1987, private

communication). In the homogeneous shear flow, r.m.s, rapid pressure p', dominates

r.m.s, slow pressure p's by a factor of two at both times.

t It has been suggested (P. Bradshaw 1987, private communication) that the term 'complete

pressure' be adopted to describe the sum of rapid and slow pressures to avoid confusion with
either the full pressure (mean plus fluctuating parts) or the total pressure (static plus dynamic

pressures).
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FIGURE 2. Contours of constant pressure on the :cy-plane in figure 1 (/_ = 8): (a)

rapid pressure, p,; (b) slow pressure, p,; (c) complete pressure, p = p, + p,. -_,

negative; .... , positive.
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Z

FIGURE 3. Contours on the zy-plane in figure 1 (fl = 8): (a) fluctuating Reynolds

stress uv (--, negative; .... , positive); (b) fluctuating vorticity magnitude, I ,12.

It was found that the correlation coefficient between the rapid and slow pressures

is very small (0.05 at fl = 4 and 0.002 at fl = 8). Note that this fact provides

strong support for the modeling procedures in which the pressure-strain-rate term

is divided into the rapid and slow parts (Launder et al. 1975; Lumley 1978). Since

the correlation coefficient between the rapid and slow pressures is almost zero, one

would inquire whether they are concentrated in different regions in space.



lntereomponent energy transfer in turbulent shear flow 171

/3 //11 _11 T11 1122 _2_ T22 //33 _ss T3s

4 -35.9 -16.8 -52.6 -5.2 17.6 12.4 41.1 -0.8 40.3

8 -29.7 -26.1 -55.8 -4.1 24.3 20.2 33.8 1.7 35.5

/3 = St; Tij = Ilij + Oij where//ij = _ prsij and 4qj = _ psSij.

TABLE 1. Components of pressure-strain-rate in homogeneous shear flow.

To address this question, instantaneous pressure fields were studied in detail.

Figure 1 shows a schematic of an zy-plane (consisting of 64 × 64 data points)

midway in the spanwise z-direction in a 64 × 64 × 64 subdomain where primary

attention is to be paid for the following discussion.t Figures 2(a-c) show contours

of constant rapid, slow and complete pressures at /3 = 8. It is discernible that

variation of rapid pressure is much larger than that of slow pressure. Even more

obvious is the substantial difference in scale. Figure 2(a) (and three-dimensional

contour plots not shown here) illustrates that rapid pressure is roughly constant

in planes perpendicular to the z-axis and the streamwise variation is sinusoidal

with about two wavelengths occupying the whole computational domain. On the

other hand, figure 2(b) shows spotty distribution of slow pressure. Therefore, the

product of this very-large-scale structure of rapid pressure and the much-smaller-

scale slow pressure results in a relatively-small-scale structure with average near

zero: PrPs/(P'rP's) _-- O.

Figures 3(a, b) display contours of constant values of instantaneous Reynolds

stress (uv) and fluctuating vorticity magnitude respectively. Comparison

with figure 2(b) suggests that slow pressure is concentrated in scales of roughly the

same size as tim Reynolds stress. In contrast, vorticity resides in scales considerably

smaller in the transverse and more elongated in the direction of principal axes of

the mean deformation-rate tensor. This is consistent with the observation of Rogers

& Moin (1987) that vorticity concentrates in 'legs' of hairpin-like vortex structures

as they are stretched and rotated by the mean shear.

4. Intercomponent energy transfer processes (events)

Statistical averages of the diagonal components of the rapid, slow and complete

pressure-strain-rate tensor at/3 = 4 and 8 are presented in table 1. Statistically,

the pressure-strain-rate transfers energy out of u (Tll < 0) into v and w (T_2 > 0

and Ts3 > 0); the w-component receives the greater amount (T33 > T_2). The rapid

term removes energy from u at a rate twice that of the slow term at/3 = 4 and

at about the same rate at fl = 8; however, the ratios between components of rapid

transfer rate (//11://22:1133) are nearly the same at both times.

_f Only one-eighth of the whole 128 x 128 x 128 dataset could be processed at a time on an
IRIS workstation used for graphical display at the NASA-Ames Research Center. The strongest
pressure-strain-rate events at/_ -- 8 were observed in and near the plane shown.
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FIGURE 4. Schematic representation of intercomponent energy transfer process by

pressure-strain-rate covariances (fl = 8): (a) rapid transfer; (b) slow transfer. The

directions of energy transfer are those suggested by the statistical averages.

The relative rate of gain or loss of energy in ead_ component is illustrated schemat-

ically in figure 4. On average, both rapid and slow terms remove energy from u.

Most of the net energy received by w is due to the rapid term, whereas the v-

component receives its energy mostly via the slow term (see table 1). This would

suggest, as indicated by the arrows, that the rapid term transfers energy from the

u-component to the w-component (and a little from v to w), but the slow term de-

livers energy from the u-component directly to the v-component. The instantaneous

field, however, shows that this is not the case.

Figures 5(a-c) show contours of constant slow pressure-strain-rate components at

= 8 on the zy-plane illustrated in figure 1. [N.B.: Negative values are contoured

with solid lines and positive with dashed.] It can be observed that intercomponent

energy transfer is highly localized in relatively few strong events.t Two-point cor-

relations (not shown) suggest that the average spatial scale of the rapid transfer

event is roughly twice that of the slow transfer event.

By comparing pressure--strain-rate contours in each of the three components, it

is possible to determine the net sender and net receiver in each energy transfer

event. Four events are identified for this purpose. Events (_) and (_ represent

the greatest contributions to the energy transfer out of the u-component by the

slow term.:_ Event (_) is by far the strongest, reaching peak values twice that

in (_). In this event, most of the energy from the u-component is transferred to

the w-component and only a small amount of energy is transferred from u to v.

Surrounding this event is a region of rather powerful energy transfer from the v-

component into w-component. The w-component therefore receives energy both

from u and v. A similar energy transfer process is seen in event (_), although most

of the u-energy is transferred directly to w, with smaller amounts from u to v and v

t The rise in pslz from zero is exceptionally abrupt. A three-dimensional view of constant ps11-

contours suggests that the transfer of energy from the u-component is concentrated in about ten
primary events scattered within the 64 x 64 x 64 subdomaln.

For the rapid transfer, two other exceptionally strong pressure-strain-rate events exist in addi-
tion to events coinciding with the two slow events.
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FIGURE 5. Contours of slow pressure-strain-rate on the xg-plane in figure I (/3 = 8):

(a) pss11; (b)_ss_Tj..(c_._,s33. , negative; .... , positive. Four significant events
are labeled Ate, B(B), (_ and (_) (see text).
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FIGURE 6. Schematic of the intercomponent energy transfer process as deduced

from the instantaneous pressure-strain-rate field (_ = 8): (a) rapid transfer; (b)

slow transfer. A composite picture (on the right) is developed from sum of the

individual energy transfer processes of the three components.

to w. Therefore, the slow term transfers most of the energy from u to w rather than

to v (as might be implied by figure 4). In addition, a great deal of energy transfer

takes place between v and w, independent of transfer from u. In event ©, for

example, ener_ is transferred directly from the w-component to the v-component,
and in event _ energy flows back and forth between w and v.

Our interpretation of the instantaneous events in the rapid and slow pressure-

strain-rate fields is schematically summarized in figure 6. The slow term transfers

energy from tt primarily to w with a small amount to v, and some energy from v is

transferred to w; however, more energy enters v from w than vice versa. As shown

to the right of figure 6, the net process is an indirect transfer of energy from u

to v through w with significant energy transfer between v and w. The rapid term

moves energy from u again primarily into w. However, there is considerably greater

energy transfer to w from v. The w-component appears to receive a significant

portion of its energy from the v-component, while transferring a lesser amount back

to v. Compared with the slow process, the rapid term to a much greater extent

transfers energy back to u from both v and w. The transfer processes in both rapid

and slow parts are clearly more involved than those inferred from the statistics only

(cf. fig. 4).
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FIGURE 7. Three-dimensional contours of constant vorticity (/3 = 8): (a, b) _v_,

positive (solid contour) and negative (mesh contour); (c, d) w., all negative (solid

contour, higher values of I_=1; mesh contour, lower values). (a, c) side view looking

towards the xy-plane; (b, d) top view looking towards the zz-plane. (Very little

positive _y exists in this region.)
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5. Instantaneous structure of the most significant event

In their study of a sheared Taylor-Green cellular flow, Corrsin & Kollmann (1977)

reported that intercomponent energy transfer from the streamwise to the transverse

components is associated with local stagnation points. To understand the physical

mechanisnas by which the intercomponent energy transfer proceeds in homogeneous

turbulent shear flow, the structure of the velocity field in the neighborhood of

significant energy transfer events was investigated.

Event (_) in figure 5 shows the strongest energy transfer from the streamwise

component in the 64 × 64 × 64 subdomain at fl = 8. Recall that this event is

associated with a region of concentrated vorticity (fig. 3b). Upon close examination,

we found a rather complex three-dimensional vortical structure in which the energy

transfer event is embedded. In the xy-plane of figure 3(b), the fluctuating vorticity

magnitide in event (_) turns out to be all spanwise vorticity wz (w_ and w v are zero

there!), indicative of the existence of a local shear layer. This is confirmed through

three-dimensional contour plots of w_ and w.. near event (_) as shown in figure 7

(very little ,09 exists in this region).

The two vorticity components are viewed looking from the side along the z-axis

at the xy-plane (figs. 7a, c) and looking from the top down at the xz-plane (figs.

7b, d). There exists a sheet of negative spanwise vorticity (w_ < 0) relatively thin

in the y-direction in comparison with its spanwise extent (figs. 7c, d). Surrounding

this sheet-like structure is a region of strong w_ of two tube-like structures, one

with positive and the other with negative streamwise vorticity (figs. 7a, b). The

spanwise separation of the two vortex tubes was estimated to be about 20 viscous

units (V/-_/S), consistent with the typical hairpin vortices observed by R/9_ers &

Moin (1987) in the same flow. The vortical structure in the region of event _ then

appears to consist of the remnants of an inverted hairpin vortex with a local sheet

of spanwise vorticity occupying the region in between.

Notice the gap in the spanwise vorticity shown in figure 7(d). Examination of the

velocity vectors shows the existence of a local stagnation point in this gap, appar-

ently a consequence of the velocity field induced locally by the vortical structure.

Figure 8(a) shows the top view of the three-dimensional region in which psaa is con-

centrated compared with streamwise (fig. 7b) and spanwise vorticity (fig. 7d). The

peak in pala (solid volume) occupies this gap in the wz-field, suggesting the energy

transfer out of the u-component is, for this powerful event, associated with a local

stagnation point, itself associated with neighboring vortical structures embedded

in the turbulent field. Interestingly, instantaneous Reynolds stress (fig. 8b), like

streamwise vorticity, is concentrated in regions which straddle the psll-event.

As we have observed, the structure of high pressure-strain-rate concentration

interacts strongly with coherent vortical structure where the Reynolds-stress ed-

dies are energetic. In view of its importance of the pressure-strain-rate term in

Reynolds-stress transport modeling, it would be of considerable value to investigate

how the intercomponent energy transfer by the pressure-strain-rate takes place in

association with dynamics of the coherent vortical structures.



Intercomponent energy transfer in turbulent shear flow 177

I I X

m

z (a)

.u

m

P

z (b)

o

1

FIGURE 8. Three-dimensional contours in top view looking towards the xz-plane

(/3 = 8): (a) pressure-strain-rate, psi1; (b) Reynolds stress, uv. In both plots,

contours shown are all negative (solid contour, higher values in negative; mesh

contour, lower values).
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A General Form for the Dissipation
Length Scale in Turbulent Shear Flows

By J. C. R. HUNT 1 P. R. SPALART 2 and N. N. MANSOUR 2

It has been found that, for a wide range of turbulent wall- bounded shear flows

with mean velocity profile U(y), the length scale Lc determining the dissipation

is approximately described in terms of distance from the wall y, the mean shear

dU/dy, and the variance of the normal component of turbulence v 2, by the formula

AB dU/dy
L_ 1 _ -- + As

where L, = _l(v2) 3/_. To match with shear-free boundary layers, AB --_ 0.27, and

with the log layer, As -_ 0.46. The shear flows tested here were: boundary layers

over a flat plate, sink flow, oscillatory flow and channel flow. The use of _ as a

velocity scale minimizes the effects of Reynolds number. However, the formula fails

within a distance of order L, for the regions where dU/dy = O.

1. Introduction

The estimation of the rate of dissipation of turbulent energy _ is a critical feature

of many computations of turbulent shear flows. However, current methods based

on a heuristic differential equation for _ are not always accurate and almost never

understood in physical terms. In particular, the relative effects of the distance (y)

from a boundary and the shear dU/dy on the eddies is not clear.

The essential point in thinking about the rate of dissipation c is that it is con-

trolled by the steepest gradients of the energy-containing eddies. Therefore we need

to be able to define the smallest integral or macroscales.

The aim of the research described here is to specify the relevant velocity compo-

nents and macroscale L, that enable _ to be estimated. (For previous discussion,

see Hunt, Stretch & Britter, 1986.)

Recent theoretical and experimental research on shear-free turbulent bound-

ary layers (Hunt, 1984) ("SFBL", where dU/dy __ 0), has demonstrated how the

1 Univ. of Cambridge

2 NASA Ames Research Center
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smallest "macro" scale is that of the normal velocity component t (2) and that"11

L(2) .._ 1.7y. If we are to use this length to estimate e, we recall that in a SFBL.
11 --

is approximately invariant with distance from the wall (0e/ay __ 0). It is also

found by theoretical (or scaling) arguments that v--5-= CBe2/ay 2/s, where CB is a

constant. The linear analysis of Hunt (1984) gives a value for CB = 1.8, while the

measurements in the atmospheric convective boundary layer give CB -- 2.5.

Therefore in the SFBL it is natural to define tile dissipation scale as

L, (fi)3/2 ,_3/2: "_ t_B y (1.1)

It is convenient to express (1.1) as

L[ 1 = ABy -1 (1.2)

So we take AB as ranging from (1/2.5) 3/2 = 0.25 to (1/2.0) 3/2 = 0.35. Note that

the horizontal scale of the vertical fluctuations L_? in the SFBL is about 1.7y, so

L, is about r (2)
_11 "

By contrast in a uniform shear, the length scales, including L,, are largely deter-

mined by the shear dU/dy and the velocity fluctuations, so that

L,=Csv /(dv/dy)

where Cs is a dimensionless parameter of order unity. Recent numerical simulations

on the time evolution of turbulence in a homogeneous shear flow by Rogers et at.

(1986), Lee, Kim & Moin (1987), and Rogallo (1981) show that the parameter Cs

depends on the initial conditions (in particular L?l)(dU/dy)/x/F_, and the total

strain (=t dU/dy). However, for a wide class of actual shear flows the effective

value of t dU/dy only varies over a range of about 3 (Townsend, 1976). So we can

expect that there is an approximately constant value for

C, = L, IdU/dyl _ 1 (1.3)
(_5)112 As

What happens in a shear flow near a boundary? Dissipation of turbulent energy

is driven by the straining of small eddies by slightly larger eddies. So the dissipation

length scale L, depends on the smaller of the two effects of the boundary and the

shear. So we take the harmonic mean of (1.2) and (1.3)

L[ _ = A___B+ AsI dU/dy l (1.4)
y
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Taking AB --_ 0.27, then As can be calculated from the log layer (assuming at

high Reynolds number _ = 1.3u.), and a local equilibrium between production

and dissipation of turbulence energy. We obtain

As _- 0.46 (1.5)

In the research performed at the CTR, L, has been computed using the data

from direct simulations of a number of wall-bounded flows. We make a comparison

here with (1.4), using (1.1) to define L,

2. Preliminary results

In Fig. la Lc/_ is plotted against y/g for the flat plate boundary layer (Spalart,

1986b); in Fig. lb, for the sink boundary layer (Spalart, 1986a); in Fig. 2 for the

oscillating boundary layer (Spalart &: Baldwin, 1987), where the flow reverses, and

in Fig. 3 for the channel flow (Mansour, Kim & Moin, 1987).

Where the results for L_ have been computed for different values of tile Reynolds

number (e.g., Fig. 1), the normalization (1.1) reduces the profiles of L,/_5 to a

form that is approximately independent of Re. If L, were defined on the basis of

e/(u2_ij_3/2, this would not be so. In Figs. 1 through 3, we have used the technique

of extrapolating the values of u 2 to their values as Re _ oo, by suitable extrapola-

tion of the high wave number spectrum (Spalart, 1986b; Perry et al., 1986). This

method apparently works well even for transitional turbulence, such as occurs in

the oscillating boundary layer near reversal.

All the results agree well in the log regions (where L, is proportional to y) for

which the coefficient AB was defined. But the results show that the formula (1.4)

applies well beyond tile log region. This implies that dU/dy is controlling the scale.

Tlle structure of turbulence nmst be rather similar if the constant is so good! But.,

note that, at the edge of the boundary layer or in a reversing boundary layer, where

dU/dy = 0, the model is not satisfactory. The local turbulent scale is determined

by advection of evolution from previous time. (Effects that are approximately in-

corporated in the e equation!)

3. Further work

Apparently the proposed formula (1.4) has some generality. But we still do not

know what aspect of the turbulent structure exactly corresponds to the length L,.

The researdl of Lee and Hunt (in progress) on R.D.T. near a wall may help explain

more about the relative role of blocking and shear, as will the related research on

two-point correlations.

The use of R.D.T. to study the linear interactions will not really tell us how

shear and blocking affect the nonlinear transfer. That may only come from more
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detailed computations and models of the spectra (e.g., by the studies of scale transfer

by Schiestel, D.I.A. by Yoshizawa, or the large-scale/small-scale interactions using

R.D.T. by Kida & Hunt).
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FIGURE 1. Distribution of the dissipation length scale as function of the distance
to the wall.

a) Flat-plate boundary layer.

formula Eq. 1.4: -- Ro = 670, ....

Simulations (v-_3/_/e): n Ro = 670,

b) Sink flow boundary layer.

formula Eq. 1.4: -- K = 2.5 × 10 -6, ....

Simulations (_-_3/2/e): n K = 2.5 × 10 -6,

Ro = 1410.

o Ro = 1410.
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Test Code for the Assessment and

Improvement of Reynolds Stress Models

By M. W. RUBESIN 1, J. R. VIEGAS 1,

D. VANDROMME 2 and H. HA MINH 3

An existing two-dimensional, compressible flow, Navier-Stokes computer code, con-

taining a full Reynolds stress turbulence model, has been adapted for use as a test

bed for assessing and improving turbulence models based on turbulence simulation

experiments. To date, the results of using the code in comparison with simulated

channel flow and over an oscillating flat plate have shown that the turbulence model

used in the code needs improvement for these flows. They also show that direct

simulation of turbulent flows over a range of Reynolds numbers are needed to guide

subsequent improvement of turbulence models.

1. Introduction

Various turbulence models are suggested in the literature to close the different

terms in the Reynolds stress budget, each with its advocates and its critics. To

properly assess these models, direct simulation of turbulent flows can be used to

compute the terms in the Reynolds stress budget and directly compare the model

expressions with the terms (see Mans0ur et al., 1987). Direct comparison is not

enough, however, because perfect agreement can rarely be achieved, and for a com-

plete evaluation, the models should be used in an actual computation of the flow. A

code previously developed by the authors (see. Vandromme eta/., 1983) has been

modified to simulate the channel flow of Kim et al. (1987) and the oscillating flat

plate of Spalart & Baldwin (1987). The code is based on a bidiagonal predictor-

corrector time marching algorithm (MacCormack, 1981) that has been modified to

solve the nonconservative equations that result from the introduction of Reynolds

stress turbulence models. This algorithm has been used to calculate several complex

compressible flows, including shock wave-boundary layer interactions ( HaMinh et

a/., 1985, and Viegas & Rubesin, 1983). Because the code is quite robust and can

accept turbulence modeling changes conveniently, it was decided to adapt it to the

low speed conditions of the existing turbulence simulations rather than to write a

new code. For the selected cases of flow in a channel (Kim et al., 1987) or over an

oscillating infinitely long flat plate (Spalart & Baldwin, 1987), meshes having the

1 NASA Ames Research Center

2 Facult4 des Sciences de Rouen

3 Institut de M$canique des Fluides de Toulouse
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dimensions of 5 (axial) and 50 (transverse) were employed. The small number of

mesh points in the axial direction are adequate for these problems since there are no

variations of dependent variables, except for pressure, in this direction. The code

uses two mesh points at each of the upstream and downstream boundaries to define

the conditions there. Computations with this mesh arrangement for the channel

flow took about 1 minute of Cray cpu time for about 1000 iterations and about

10000 iterations to reach steady state. The code, when used to yield time-accurate

oscillating plate solutions, took about an hour of cpu time to reach a steady periodic

state.

2. Results and Discussion

To test the code's ability to handle low speed flows, both the channel and the

oscillating plate were first run with laminar flow. The numerical results in both

cases agreed quite well with the corresponding analytical solutions (Schlichting,

1960). When the same flow cases were run with the turbulence model developed

by Vandromme et M. (1983), it was found that the numerical results did not agree

with the statistical output from the simulations.

2.1 Channel Flow

The channel flow computations at Re=2800 gave results that differed considerably

from the statistical quantities corresponding to the simulation of Kim eta/., (1987).

For example, Fig. la shows a comparison of the distribution of the turbulent shear

stress, normalized by the wall shear as a function of the distance from the surface

in wall parameters. The solid symbols are the output from the simulation, whereas,

the open symbols represent the computed results from the modeled equations. The

difference between the results indicate that the current model in the code needs

considerable improvement. When similar computations were performed for channel

flows with higher Reynolds numbers, namely, Re=13000 and 50000, the stresses

shown in Figs. lb and lc resulted. Here the solid symbols are the same as on

Fig. la and are used as reference for the levels of the computed results, the open

symbols. These figures indicate that the current model in the code shows a large

sensitivity to the Reynolds number of the channel flow. If the LES calculations of

Moin and Kim (1982) are examined, it is noted that the maximum Reynolds shear

stress at Re=13800 found there is about 0.86. This is larger than the corresponding

value of 0.7 in the complete simulation at Re=2800, and is in the same direction of

increased normalized shear stress with higher channel Reynolds number exhibited

by the turbulence model shown in Figs. la and lb. There exist questions regarding

the near wall treatments of the subgrid model in the LES, and this suggests that

the process of improving the turbulence model to handle these Reynolds number

effects could benefit from additional accurate channel flow simulations at Reynolds

numbers higher than 2800.

Another aspect of the process of using the simulated results to improve statistical

turbulence models becomes evident in Fig. 2. Here is shown the rate of dissipation
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FIGURE 1. Dimensionless Reynolds shear stress in the near wall region of the

channel, a) Re = 2800. b) Re = 13000. c) Re = 50000.

in the equation for the normal stress, Y-_, expressed in dimensionless form. Again,

the open and closed symbols represents the results of the model calculations and

the simulations, respectively. The figure shows considerable difference between the

two computations, and at first glance suggests difficulties with the particular model

used for the turbulence dissipation rate. It was found (Mansour, Kim and Moin,
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FIGURE 2. Distribution of dimensionless dissipation rate in _-_ equation.

1987), however, that the model used in the computations evaluated with the mo-

ments found from the simulations, rather than from the modeled computations,

gave results quite close to those of the simulations. Thus the error of the modeled

computations shown on this figure result from the errors of the Reynolds stresses

used in the evaluation of the dissipation rather than the functional form of the dis-

sipation model. This is an example of the highly interactive behavior of elements

of turbulence models and indicates that model improvements must be made simul-

taneously in all elements of the model so that it improves in the aggregate. The

wealth of information available in the simulations should facilitate this process in

future studies.

2.2 Oscillating Flat Plate

Representative results of the comparison of the computation of the flow over an

oscillating flat plate with the direct simulation of Spalart & Baldwin (1987) are

shown in Fig. 3. Here are shown the time-dependent skin friction over a cycle of

time for the model computations as well as the simulation. Although the computed

results are periodic and show similar phase relationships as do the simulation, there

are significant differences between the results which, again, indicate the weaknesses
of the current turbulence model.

3. Future Directions

The authors plan to continue to use direct turbulence simulations to improve the

Reynolds stress model used in the code. The directions this will take depends a

great deal on the availability of simulations for a range of Reynolds numbers. The

range in Reynolds number is needed to minimize the number of assumptions used
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Comparison of model results with simulation data.

regarding the functional form of of the various coefficients in the turbulence model.

A test for the universality of these coefficients will be agreement with simulation

data from a variety of flow fields.
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Reynolds Stress Models of
Homogeneous Turbulence

By T. -H. SHIH 1, N. N. MANSOUR _, and J. Y. CHEN 3

Existing and new models for the rapid and the return terms in the Reynolds

stress equations have been tested in two ways. One, by direct comparison of the

models with simulation data. The other, by simulating the flows using the models

and comparing the predicted Reynolds stresses with the data. We find that existing

linear models can be improved and that non-linear models are in better agreement

with the simulation data for a wide variety of flows.

1. Introduction

Homogeneous flows are considered to be basic flows in the study of complex tur-

bulent flows. These flows are the simplest turbulent flows, yet, the pressure-strain

and the dissipation rate terms in the Reynolds stress equations do not vanish in

these flows. These terms need to be modeled for closure of the Reynolds stress

equations, and are usually recombined into a so-called rapid pressure-strain and

a return term. On the other hand, the terms related to turbulence diffusion (for

example, the triple correlation tensor and pressure transport terms, which will com-

plicate the turbulence modeling) do not appear in homogeneous flows, this allows

us to concentrate on two of the important terms to be modeled. There exist several

models developed for these terms, we have for example, for the rapid term, the mod-

els of Naot, Shavit and Wolfshtein (1970), Launder, Reece and Rodi (1975, hereafter

referred to as LRR), Shih and Lumley (1985, hereafter referred to as SL), Reynolds

(1987), and others; for the return term, the models of Rotta (1951), Lumley (1978,

hereafter referred to as Lumley) and a second-order form by Shih, Mansour and

Moin (1987, hereafter referred to as SMM).

The research conducted at the CTR this summer concentrated on testing some

existing and new models developed for the rapid and the return terms. These

models were tested in two ways. First, we compared these models directly with

numerical simulation data, since direct evaluation of these terms is possible using
the full simulation data. Second, we used these models in a finite difference code for

the Reynolds stress equations and compared the solutions of the modeled Reynolds
stress equations with numerical simulation data.

1 Center for Turbulence Research

2 NASA Ames Research Center

3 Sandia National Laboratories
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2. Reynolds stress Closure Models

2.1 Reynolds stress equation

For homogeneous turbulence, the Reynolds stress equations read as follows,

(ltiUj),t _---(UjUk)Ui,k- (Uiuk)Vj, k

q-( (pui,j) + (puj,i) )/p- 2tz(Ui,kUj,k)

where, ( ) stands for ensemble averaging. In this equation, the second line, i.e.

the pressure strain correlation tensor and dissipation tensor must be modeled. The

usual approach is to recombine the terms in the equations as follows:

(uiuj),, = Pij + II_j + II,_ - (2/3)(e),iij

where Pij is the production term,

Pi_ = -((ujuk)ui,_ + (uiu_)uj,k)

and II_j and IIi_j are called the rapid and the return term respectively and are
defined as

ri_j = (<p'_,i,j)+ <p',_j,i))/p

IIi2j = (<p_ui,j) + <p2uj,i) )/p- 2v(ui,kuj,k) + (2/3)(e),iij

where (e) = u(ui,kui,k), the pressures pl and p2 are solutions to the rapid and the

slow Poisson equations (for more details see SL).

2.2 Models

Based on realizability, Shih and Lumley (1985) and Reynolds (1987) proposed

the following model for the rapid term,

II_j =(1/5 + 2as)(qZ)(Ui,j + Uj,i)

-2/3(1 - as)(P_j - 2P_ij/3)

+(2/3 + 16as/3)(Dij - 2P,5i_/3)
(2.1)

+(6/5)bijP + (2/15)(Pij - Dij)

+(2/5)[((UiUk)Uj, q + ('lLjUk)Ui,q)(Uk_q)

-(uiup)(ujuq)(Up,q + Uq,p)]/ (q _)

where,

Dij = -( (ujuk)Uk,i + (uiuk)Uk,j)
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P = Pii/2 is the turbulent kinetic energy production,

as =-(1/10)(1 + 0.8F 1/2) (SL)

as ='(1/10){1 + 3.511-(1 - F)l/4]} (SMM)
/

If we retain in Eq. (2.1) the first three lines and set as = -1.45455, we get the
linear model of LRR.

A general form of the model for the return term is suggested by Lumley (1978),

and Shih (1984):

IIi2j = -(e){(2 + CyF_)b,j + 7[b_/+ (1/3 + 211 )b 0 + 2II _ij/3]} (2.2)

where

(1/9) exp(- 7.77/V_e) {72/x/_e

+80.1 ln[1 + 62.4(-I1 + 2.3111 )]}

-bijbji/2

=bijbjkbki/3

%(1 - F '1)

(q2)2/(9(e)v)

1 + 911 + 27111

O, "to =0, C I= 1

1, "to =0

r1=1/20, 7o=-2

Cf =

II =

III

,7=

Re =

F=

= 17/20,

3. Model Testing

(Rotta, 1951)

(Lumley)

(SMM)

3.1 Direct comparison with simulation data

The data for homogeneous strain of Lee and Reynolds (1985) and for homoge-

neous shear of Rogers, Moin and Reynolds (1986) were used to directly compare

the model expression with the simulation results. For all simulated shear flows, the

non-linear rapid model II_j, Eq. (2.1), and the non-linear return model Hi2, Eq.
(2.2), are in good agreement with the simulation data. The linear rapid model (

launder, Reece and Rodi, 1975) and the linear return model (Lumley, 1978) are

also included for comparison. Here, we present two typical flows: C128Ut(with a
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moderate shear rate S = 28.284) and C128Wt (with a high shear rate S = 56.568).

Fig.1 - Fig.4 show the comparison between the models and the simulation data. We

find that, the non-linear rapid model works well in each component of the Reynolds

stress equations (see Fig. 1 and Fig. 2), while the linear rapid model (LRR) does

not work well for the (uu) and (vv) components. On the other hand, Lumley's lin-

ear return model works very well in all sinmlated shear flows as indicated in Fig. 3

and Fig. 4. But, we find that tim non-linear return model, Eq. (2.2), works at least

as good as Lumley's linear model in all simulated shear flows, in addition, the non-

linear model works better in relaxation from simple strains (typical comparisons are

shown in Figs 5-7). The return to isotropy cases (or relaxation cases), after irrota-

tional strain, of Lee and Reynolds (1985) provide a critical evaluation of the return

model. We find that the return term models work well in all relaxation flows from

axisymmetric contractions, but the agreement between the model expression and

the data deteriorates in some relaxation flows from plane strains and axisymmetric

expansions. Fig.5 shows a typical relaxation from an axisymmetric contraction.

Fig.6 and Fig.7 show relaxations from the plane strain and axisymmetric expansion

respectively. The failure of the return term models in some relaxation flows from

plane strain (Fig. 6.1) and axisymmetric expansion (Fig. 7.1) is due to the inability

of the current models to reflect the effect of the initial condition on the relaxation

process.

3.2 Predictions using the modeled Reynolds stress equations

In this section, we choose the homogeneous shear case (C128W, high shear S =

56.568) of Rogers, Moin and Reynolds (1986) to evaluate the performance of the

rapid and return term models in predicting the Reynolds stresses. However, in

order to integrate the Reynolds stress equations, we need a model equation for the

dissipation rate (e). A standard transport model equation for (e) (Lumley,1978) was

used in conjunction with the models of SL, Lumley, and SMM. The (e) equation of

LRR was used in conjunction with the LRR model.

Figures 8.1 and 8.2 show the Reynolds stresses and dissipation rate as predicted

using the models of SMM (Eqs. 2.1 and 2.2). The model predicts well the shear

stress and the streamwise component of the Reynolds stress but slightly overpredicts

the cross stream components. Similar results were obtained using the models of SL

and lumley for the rapid and return terms (See Fig. 9b). Figure 9a shows the results

using the linear models of LRR. In this case the Reynolds stresses are overpredicted

by a significant amount.

4. Future Work

From this study, we conclude that the models given by Eq.(2.1) and Eq.(2.2) are

appropriate at least for homogenous turbulent shear flows. The linear models are

unable to predict the high shear case, and are expected to have severe limitations

for more general cases. The nonlinear models were developed based on a general

t The name of the flow cases are those of Rogers, Moin and Reynolds (1986)
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realizability conditions, we should be able to use them to model other flows. In

particular, these models should be extended to inhomogeneous flows and should be
evaluated in a similar manner.
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The Decay of Isotropic Turbulence

in a Rapidly Rotating Frame

By C. G. SPEZIALE 1, N. N. MANSOUR 2, and R. S. ROGALLO 2

A direct numerical simulation of the decay of initially isotropic turbulence in a

rapidly rotating frame was conducted. This 128x128x128 simulation was completed

for a Reynolds number Rex = 15.3 and a Rossby number Ro_ = 0.07 based on

the initial turbulent kinetic energy and Taylor microscale. The numerical results

indicate that the turbulence remains essentially isotropic during the major part of

the decay (i.e., beyond the point where the turbulent kinetic energy has decayed

to less than 10% of its initial value). The rapid rotation has the primary effect of

shutting off the energy transfer so that the turbulence dissipation (and hence the

rate of decay of the turbulent kinetic energy) is substantially reduced. Consequently,

the anisotropy tensor remains essentially unchanged while the energy spectrum

undergoes a nearly linear viscous decay -- the same results that are predicted by

Rapid Distortion Theory which is only formally valid for much shorter elapsed times.

Surprisingly, no Taylor-Proudman reorganization of the flow to a two-dimensional

state is observed. The implications that these results have on turbulence modeling

are discussed briefly along with prospective future research.

1. Results

The research conducted this summer at the CTR concentrated on the develop-

ment of improved Reynolds stress models for the description of rotating turbulent

flows. It is envisioned that such models could also have important applications in

the description of curved turbulent flows as a result of the analogy that can quite
often be drawn between rotation and curvature.

In order to gain insight into the effects of rotation, a direct numerical simula-

tion of decaying isotropic turbulence in a rapidly rotating frame was conducted. A

Reynolds number of Rex = 15.3 based on Taylor microscale and a Rossby number

of Ro_ = 0.07 were considered (this Rossby number is more than an order of magni-

tude smaller than those which were considered previously). This direct simulation

yielded some surprising results. As has been shown in previous numerical simu-

lations and experiments (see Bardina, Ferziger and Rogallo 1985, and Wigeland

and Nagib 1978), the turbulence remained isotropic after the rotation was imposed.

1 ICASE, NASA Langley Research Center

2 NASA Ames Research Center
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FIGURE 1. Transfer spectra as function of k12 = v/k_ + k22 and k3. a) Initial

distribution (isotropic decay), b) Shortly after the rotation is started (t_o/q_).

The rotation killed the energy transfer (through the generation of inertial waves; see

Fig. 1) and the turbulence underwent a pure viscous decay as would be predicted

by Rapid Distortion Theory (RDT). More precisely, the energy spectrum, E(k,t),

decayed in time in good agreement with the formula,

E(k,t) = E(k,to) exp [-2vk2(t - to)] (1)

where v is the kinematic viscosity (see Fig. 2). Equation 1 is obtained from RDT

for this problem. The surprising finding was that Eq. (1) remained an excellent

approximation even after the turbulent kinetic energy had decayed to only 10% of

its initial value. As a result of the energy transfer being suppressed, the turbulence
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decayed slower in the rotating frame (see Fig. 3). Although the integral length

scales showed the development of mild anisotropies, there was no discernable Taylor-

Proudman reorganization to a two-dimensional flow. The tensor,

]J l I

A_ = _u_,_uk, j (2)

which is normalized by the dissipation rate e, remained isotropic (under a complete

Taylor-Proudman reorganization, the velocity gradient along the axis of rotation

u,3 _ 0 as the rotation rate ft _ oo and, hence A33 << All,A22). It can be shown

that the RDT solution does not undergo a Taylor-Proudman reorganization since

the Fourier transform of the velocity,

fii(k, t) oc A(k ) exp(ia(k )lit) (3)

and, hence, in the limit as ft H oo,

10_i
fl Of - 0(1) (4)

where wi is the vorticity vector.

In order for the Taylor-Proudman theorem to apply, (1/t2)Ow_/Ot must vanish as

ft _ oo. Since RDT becomes a better approximation for longer instants of time

as ft gets larger (for a given turbulence level), it appears that no Taylor-Proudman
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FIGURE 3.
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Effect of rotation on the decay of the turbulent kinetic energy.

reorganization will occur in a rapidly rotating isotropic turbulence. Previous in-

vestigators (c./., Bardina, Ferziger and Rogallo 1985) had speculated that such a

reorganization to a two-dimensional flow could occur.

Since the results of these direct simulations on rotating isotropic turbulence

clearly demonstrate (in support of Wigeland and Nagib 1978, and Bardina, Ferziger

and Rogallo 1985) that there is a reduction in the dissipation rate with increasing

rotation rate, it is clear that modifications need to be made in the dissipation rate

equation. All of the commonly used dissipation rate equations (c./., Launder, Reece

and Rodi 1975) predict that for a given mean flow, a system rotation has no effect

on the evolution of the dissipation rate in contradiction of experimental and numer-

ical simulation data. A recently proposed model by Bardina, Ferziger and Rogallo

(1985) given by,
_2

= -c, - (5)

for an isotropic turbulence (where _ is the dissipation rate, q2 is the trace of the

Reynolds stress tensor, and C2 = 11/3 and C1 = 0.15 are empirical constants)

was tested. It was found that this model, which compared favorably with the data

of Wigeland and Nagib (1978) performed very poorly at the rapid rotation rates

considered herein (see Fig. 4). Consequently, it appears that the dependence of the

dissipation rate equation on f_ is unlike in Eq. (5). Furthermore, it is not clear

at this time how such a modified dissipation rate equation could be generalized to

anisotropic turbulent flows. Any smooth function of the invariants,

2 2
_'_ij _ij, _ij nj, _ij Sij, (6)
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where,
1 1

a_j = _ (u_,j - v_,_), S_j = _ (v_,j+ Uj,_) (7)

Ui is the mean velocity, and rij is the Reynolds stress tensor, reduce to functions
2

of f_ in the limit of rotating isotropic turbulence (a model containg f_ijSij was

proposed by Pope 1978). Work on the development of a more generM dissipation

rate equation which can account for rotation in inhomogeneous turbulent flows was

begun during the summer program and will continue in the future.

2. Future work

The time development of the energy spectrum for an isotropic turbulence is given

by,

/_(k,t) = T(k,t)- 2vk2E(k,t) (8)

where T(k,t) is the energy transfer. The equation for the dissipation rate, e, can

be derived by multiplying Eq.(8) by 2vk2dk and integrating over all wave numbers,

/0 /0i = 21., k2T(k,t)dk - 4v 2 k4E(k,t)dk (9)

The commonly used model for the right-hand-side of Eq. (9) is given as follows:

_0 °° _0 °° e22v k2T(k,t)dk-4u 2 k'E(k,t)dk = -C1-_ (10)
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where q2 is twice the turbulent kinetic energy. Any modification to the above model

that takes into account the effect of rotation, has to reflect the fact that the first

term in Eq. (10) vanishes for high rotation rates.

Work was begun on the development of improved second-order closure models.

In all of the currently popular second-order closure models it is assumed that the

deviatoric part of the velocity pressure-gradient correlation DIIij and the deviatoric

part of the dissivation rate corelation n D..j urp f,,nrt;nn_ ,-¢ --.- and u ...., .............. "S' _ij, "Qij ........ ,

we considered the most general model of the form

DIIkt + oDkt = f_t(rq, Sij, flij) (11)

Equation (8) should be subjected to the constraints:

(i) Form invariance under a change of coordinates (c.f., Smith 1971).

(ii) Material frame-indifference in the limit of two-dimensional turbulence (see

Speziale 1981).

and the fact that DIIij, and DDij are traceless. This led to the most general form,

- - §_.,.rm._kl)

q4 -
3

2
+3_(_k_,..S.z-- + nm_,..S._ -

q2 2
+37--(_k_S_.S._ + rt_S=.5;.k - _r,..S..pSp,.,Sk_)

21
+/3s-(rkmr,..S..S.t + r..r._,,S,,.S.k - -3r._.r,,pSp.S.,.$kz)

1 (rkmr._.fl.l + r._r._.fl.k)
+2(1 -/39)(.t_,_l]t,_ + r.nn_,n) +/39 _-_

(12)
The coefficients /3i are functions of the invariants. This model is substantially

simpler than previous attempts at general representations which contained several

redundant terms (c.f., Reynolds 1987 for a summary of such previous representa-

tions). In the limit of a two component turbulence, Realizability (Shih 1987, private

communication) requires that

1
/3_=2- .--_'I,o',,/33

z£ o

/32 =0

/34 =0
1

/3s =--(_.mr-S-,k/3e +
lCrkzS.uS,_k/37 1+ --'l'klTlmSmnS.k/38 )/q'pq_pq

(13)
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and hence, in the first approximation this model has only five undetermined con-

stants. This model will be investigated in the future in collaboration with Dr. T.-H.

Shih. It is interesting to note that this model is consistent with the numerical re-

suits of this study which predict that an initially isotropic turbulence in a rotating

frame decays isotropically.
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Evaluation of a Theory for Pressure-Strain Rate

By J. WEINSTOCK 1, and K. SHARIFF 2

A theoretical expression for the slow part (the non-linear fluctuation part) of the

pressure-strain rate is compared with simulations of anisotropic homogeneous flows.

The objective is to determine the quantitative accuracy of the theory and to test its

prediction that the generalized Rotta coefficient, a non-dimensionalized ratio of slow

term to the Reynolds stress anisotropy, varies with direction and can be negative.

Comparisons are made between theoretical and simulation values of the slow term

itself and of the generalized Rotta coefficients. The implications of the comparison

for two-point closure theories and for Reynolds stress modeling are pointed out.

1. Introduction and background

The slow pressure-strain rate correlation _j is a key term that occurs in Reynolds

stress modeling. Until recent years it was almost universally modeled according to

Rotta's (1951) prescription as

s= C _
_ij - q2 bij,

(empirical model)

where bij =< u_u_ > -[1/3(q28ij)], u I is the fluctuating velocity along direction i,

q2 __< uiui > is twice the turbulent kinetic energy density, e is the rate of turbulent

kinetic energy dissipation, and C is an empirical constant referred to as Rotta's

constant. However, Lumley (1978) has shown that C cannot be constant and more

recently, it has been shown (Weinstock, 1981; 1982; 1985) that C is neither constant

nor the same for different directional components ij. These variations occur because

• _) depends on more than one scale of the turbulence field, and, in addition, the

scales vary with direction.

One way to account for the effect of all scales is for the slow term to be derived by

a two-point closure theory. Such a derivation has been carried out (Weinstock, 1981_

1982; 1985), a principal result of which was that _j can be expressed as an integral

over scalar energy spectra Eij(k). Standard closures such as the DIA (Kraichnan,

1959) and EDQNM (e.g., Cambon et al., 1981; Bertoglio, these proceedings) are

much more ambitious, and correspondingly complex, since they determine the en-

ergy spectrum itself. Here, Ei.i(k) is taken from simulations. It is hoped that the

relative simplicity will allow the present theory to be applied to a wider class of

flows - including those with relatively large anisotropies after suitable modeling of

1 NOAA/ERL/Aeronomy Laboratory

2 NASA Ames Research Center
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the scalar spectra. This is encouraged by a "universal" character found for the

theoretical _i'j in which its dimensionless (Rotta) coefficients are very insensitive to
the shape of the energy spectrum in the small k (energy producing) region, provided

that the Reynolds number is not too small. We believe that such a universality is

crucial for predictive modeling of flows.

The theoretical _j to be tested is given by

_2_,j = -Cijebij, (No sum on i and j) (la)

):o :oCo_ = 1.08 _3) a/3 dkl dk2
eko qbo,_

1

× k_k_E(kz)[E,_,_(kl) - _E(kl)]H(k_,k2), (lb)

(k_+ k_)'/3
1

E(k) = _ [E_(k) + E,_(k) + E33(k)],

[ 2.4k2 2 (4k, k2 ) 2( 2k_ )]H(k,,ks) _ 2 k_+ k_ 0.08 k,_+ k_ 1 + _ 1 k,_+ k_ '

where the Cij are dimensionless coefficients referred to as generalized Rotta co-

efficients, Eaa(k) is the scalar spectrum for kinetic energy along direction a,

ko = (3/3) 3/2 e/q 3, and/3 is the Kolmogorov constant. The various numerical factors

arise from angular integrations of spectra in wave space. The specific angular de-

pendence of the spectra had to be modeled to make this possible. The off-diagonal

elements C12, Ca3, (723 are given elsewhere (Weinstock, 1981) and have not been

evaluated. A much simpler form of C,_ for use in Reynolds stress modeling is
a.213_.-s/3obtained by use of the model spectrum E_ = w_,_ 0_ for ko < k < k_,, and

2/3trnt--rn-5/3
E,_ = PQ1 x Xo for k < ko, where k_ is the viscous "cut-off" wavenumber.

We refer to this E,_ as the model spectrum.

Our primary goal is to test expression (1) by comparison with computer simu-

lations. This test has also implications for standard two-point closures in general,

since such closures have in common with our closure the neglect of a two-time

fourth-order velocity cumulant.

Our article is outlined as follows: Straight forward comparisons are given in Sec.

2 where values of ¢_,_ and C,m = -@_,.,/(eb,.,,.,) obtained directly from simulations

are compared with (lb). Improvements and generalizations of the theory suggested

by simulations are in Sec. 3, and Sec. 4 contains suggestions for further simulation

tests.

2. Comparison between theory and simulation

The theory was compared with several simulations of homogeneous shear and

straining flows. Typical examples are given in Figures 1 through 3 for two cases of

homogeneous shear (S = U1,2, simulation runs C128U and C128X of Rogers, Moin
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FIGURE 1. Slow pressure strain components for homogeneous shear (moderate

shear case C128U of Rogers, Moin & Reynolds, 1986). (a) Comparison of theory

with simulation for the diagonal components. (b)-(d) Generalized Rotta coefficients

as computed from the simulation data and using the simulation spectra in the

theory.

and Reynolds 1986) and for plane strain (strain directions are 2 and 3, simulation

run PXA of Lee and Reynolds 1985). For the shear cases the horizontal axis is the

total shear, St. For the plane strain case the horizontal axis is the eddy turnover

time. Figures 1 show the evolution of _ scaled on the initial dissipation rate, and

C',_,_ for run C128U, Figures 2 for run C128X and Figures 3 for plane strain run

PXA. Each graph includes simulation and theoretical values.
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FIGURE 2. Slow pressure strain components for homogeneous shear (high shear

case C128X of Rogers, Moin & Reynolds, 1986). a) Comparison of theory with

simulation for the diagonal components, b)-d) Generalized Rotta coefficients as

computed from the simulation data and using the simulation spectra in the theory.

(a) Dominant features of the (slow) pressure-strain rate

The simulation data show the following features:

- C_a varies between components.

- The normal components 611, 6'22, C33 each vary greatly during the simu-

lations. For example, 6'11, in plane strain run PXA, varies from -5 To +10

(in the unstrained direction). The Reynolds number defined as q4/(u_) varied

between 39.1 nad 69. Another example is that 6'22 varies from 0.6 to 2.5 in

homogeneous shear flow (C128U).

- C1] can be negative for many conditions. However, this does not imply that
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FIGURE 3. Slow pressure strain components for homogeneous plane strain (case

PXA of Lee & Reynolds, 1985). a) Comparison of theory with simulation for the

diagonal components, b)-d) Generalized Rotta coefficients as computed from the

simulation data and using the simulation spectra in the theory.

1.4

the flow will not return to isotropy were the mean deformation to be removed

at that instant. The Lumley return to isotropy tensor, of which the pressure

strain rate is only a part, determines this.

Each of these qualitative features is predicted by the theory. There is good quan-

titative agreement of the pressure strain rate for the shear cases, discounting times

larger than St = 12 where the "box" size has an important influence. The agreement

is weaker for the case of plane strain. In the comparisons for the generalized Rotta

coefficients C_,_, the theoretical C'_,(a = 1,2,or 3) generally follows the trend of

the simulations; being small whenever the simulation C_ is small and large when-
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ever the C_o is large, and most notably, passing through zero at the same time that

the simulation C_o (see Figure 3b) does.

During straining flows, the values of Co_, in the strained directions, were always

overpredicted by the theory. This discrepancy might be accounted for by the strong

temporal variations of b,_ which violates the present assumptions in the theory

which limit it to slow variations of boo and low mean strain-rate. Indeed, when

estimates are made to account for time-scale variation of boo by calculating the

-1 ...... :-- _1__ t _ i.lllle-Scale...... _ ,, _._ .,a_a,_h_,_ '" ' that is used to derive (lb), the discrepancies

are reduced. However, for modeling purposes the original, unextended theory may

be sufficient.

(b) Unezpected .features of 'b_,_

- Simulations show that C,_ can be very small (much less than unity) in strain-

ing flows for a wide range of anisotropies. This smallness was unexpected, al-

though it is contained in the theory. Small Co,_ implies that intercomponent

energy transfer is a very weak process in straining flows.

- Cao can vary significantly with strong temporal variations of kinetic energy.

Surprising is the extent of difference between C11 and Cs3 in homogeneous

shear flows (Figures lb and ld).

These features are also found in the theory with small quantitative discrepancies.

3. Improvement and generalization of the theory

(i) An intriguing proposition is to derive _ij(X) ----< pS(xt)Sij(X _ +X) >, the two-

point correlation of the slow pressure-strain, from the theory. This was suggested

by Brasseur and obtained from simulations by Brasseur and Lee, Schiestel and

Rogallo (these proceedings). This correlation provides a more severe and detailed

test of closure theory than does C,_,_. It also provides a direct link between spatial

structures and Reynolds stress modeling. The theoretical &ij(x) was worked out

during the summer school, but was not compared with simulations at the time; for

example, one component of _#(x) is

1

/? /• =- dk dk. dOsinOcos(k lcosO)
_,o q

kSk_E(kb)H [ 5× ( ks + k_)4/3 sin sSE_s(k_)- _sin ?

where

8 cosS6 E_(k_)-_sin'8 E33(k_)

[ 4 k k: ]k_ =(k s+k_) 1+ 3(k2-+kZa)s]

(ii) Extend the theory to include spatial and temporal variations.

(iii) Revise the model scalar spectra E.,_(k) to account for small Reynolds num-

ber.
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As pointed out by Bertoglio the theory does not account for deformation of wave

vectors by the mean strain rate and should be modified accordingly.

(iv) Attempt to model the rapid pressure-strain rate, by a k-space closure.

(v) Compare the theoretical pressure-strain rate with a k- space model of Schiestel

(these proceedings).

4. Suggestions for future simulations

(a) Regarding the pressure-strain rate:

(i) Compare the theoretical two-point pressure-strain < pS(x')Sij(x' + x) > with
simulation.

(it) Generalize the theoretical < pSSij > to apply to channel flow, and then test
with simulations.

(iii) Using simulations, calculate the two-time fourth-moment velocity cumulant.

Determine the time scale for its decay. In particular, determine if this time scale

is shorter than the time scale for decay of second-moment correlations. Such an

ordering of time scales is basic for k-space closure theories in general, and also for

the present theory.

(b) Regarding a theory for modeling inhomogeneous flows:
I I I i !

(i) Compare simulation values of < UiRjU k >, < OUiU j >, < 02U I >,

< u_u_Op/Oxk >, < Ou_Op/Oxj > with the eddy-damped quasi-Gaussian approxi-

mation (EDQG) and with a recent theory. These quantities are basic to modeling

weakly inhomogeneous and stratified flows.

(it) Verify whether or not the cumulant of

( U I I I e Ul2 12• VU )iU, iU i >=< > V < u i >. This was derived by a theory and,

if true, contradicts the quasi-Gaussian assumption for inhomogeneous flows.
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Relations Between Two-Point
Correlations and Pressure Strain Terms

By MICHA WOLFSHTEIN 1 and SANJIVA K. LELE 2

We study the structure of the two-point spatial correlations (velocity-velocity,

velocity-scalar and scalar-scalar) with a view to improve turbulence closure models.

The linear model for the two-point correlations proposed by Naot et al. provides

a method of including the information about the turbulence structure in the tur-

bulence models. We test the assumptions and adequacy of this model against the

homogeneous shear flow simulation data base. The model performs poorly in some

details and we suggest how it may be improved. We also test the models for rapid

pressure-strain terms in a variety of flows including axisymmetric expansion and

contraction flows, homogeneous shear flow, channel flow and boundary layer.

Introduction

Two-point correlations are often considered to include much information on the

structure of turbulence, and on the modeling of various terms in the equations

governing turbulent quantities such as the Reynolds stresses or the turbulent heat

fluxes. In particular, the rapid pressure-velocity gradient terms in the Reynolds

stress equations or pressure-temperature term in the heat flux equations, as well

as the viscous decay terms of these equations may be exactly calculated if the

corresponding two-point correlations are known with sufficient accuracy. It was

therefore the purpose of the present project to study the two-point correlations, and

to improve turbulence closure models for pressure terms by a better understanding

of the two-point correlations.

The report is organized in three sections. The first section contains some general

observations on two-point correlations; Section 2 contains the assessment of linear

two-point correlation models, which is followed by our study of linear pressure-strain

models in Section 3. Finally, some conclusions from the present work are presented.

1. Two-point correlations

Two-point correlations (velocity-velocity, velocity-scalar, scalar-scalar) were ex-

amined for homogeneous shear and channel flows. The primary focus was on the

homogeneous shear case due to its simplicity. The numerical data base generated

by Rogers et al. (1986) provided the "raw data." The C128 simulation series was

studied in most detail. The simplest case is that of scalar-scalar correlation in a

1 Israel Inst. of Tech.

2 Center for Turbulence Research
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homogeneous shear flow. The flow is in the z-direction, with a uniform velocity

gradient in the y-direction. Uniform scalar gradients were applied in the z-, y-, and

z-directions, further referred to as scalars A, B, and C, respectively. Details of the

simulations may be found in Rogers et al. (1986). Contour plots of the scalar-scalar

two-point correlations in the z-y plane at nondimensional time St = 12 are shown

in Figs. la, b, and c for the three corresponding temperature gradients. All cases

show an inclination of about 15°-20 ° with respect to the z-axis. This inclination

appears to represent the influence of dU/dy (mean shear). At e_b_'er nennHmen -

sionai times the correlations show a steeper angle. This behavior is similar to that

observed by Rogers et al. (1986) for vorticity correlations. Correlation contours

in the y-z plane (not shown) are nearly elliptical, with the direction of the scalar

gradient defining the major axis. The influence of mean shear is also clearly evident

in the contours of the velocity-scalar correlations uB and wC when plotted in the

z-y plane (not shown). The influence of the mean scalar gradient on the velocity-

scalar correlations is better seen in the y-z plane. In Fig. 2 the correlations vB and

wC are plotted in the y-z plane at nondimensional time St = 12. The correlations

decrease more slowly in the direction of the applied scalar gradient, a feature also

noted in the scalar-scalar correlations.

The contours of the velocity-velocity two-point correlations uu, vv and ww in

plane z-y are shown in Fig. 3. While the uu and _ show an inclination of about

22 ° the _-_ does not show this orientation. This suggests a strong influence of the

mean velocity gradient dU/dy on the velocity-velocity two point correlations. It

may be noted that the derivation of the linear pressure-strain models (as presented

by Naot et a/.) assumes no direct dependence of the two point correlations on the

mean velocity gradients.

Finally, the channel flow results of the two-point correlations with separation vec-

tor in the y-direction show asymmetries not possible in the homogeneous shear case.

The influence of the wall appears to be quite persistent, and leads to asymmetries

in the correlations. It may be noted that some of these features are well described

by a model proposed by Hunt (details may be found in his report in the present

volume).

The principal conclusion from this part of the study is that the two-point correla-

tions (velocity-velocity, velocity-scalar, and scalar-scalar) show strong dependence

not only on their single-point analogs but also on the mean velocity gradients and

mean scalar gradient. Thus models which inadequately represent these dependen-

cies may not be very successful.

2. Linear two-point correlation model

The two-point correlations may be represented by a model in which they are

linearly related to the corresponding single-point correlations by arbitrary functions

of r, the magnitude of the separation vector only. One such function is required for

scalar-scalar correlation, two for scalar-velocity correlations, and six for velocity-

velocity correlations (but three of these are related to the other three by continuity

relations. Such models have been proposed by Naot et al. (1973) for the velocity-

velocity correlations and by Miklavic and Wolfshtein (1987) for the velocity-scalar
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and scalar-scalar correlations. We tried to fit the data for the homogeneous shear

case to this model. Typical results for scalar-velocity correlation functions are shown

in Fig. 4 for functions G and R.

The different curves correspond to different combinations of profiles of the two-

point correlations (from simulations) used to obtain the model function. Consider-

ing function G, which contains the isotropic part of the correlation, most (but not

all) profiles appear to give similar results for small separations, but not for large

separations. The function R representing the non-isotropic part has small values

for the small separations, and becomes important only for larger separations, and

there it shows unacceptable scatter. Three velocity-velocity model functions (not
shown) show a very similar behavior.

We did not have sufficient time to test the validity of the linear two-point corre-

lation model in other flow fields. However, examination of the governing equations,

as well as results on the rapid pressure-strain term (to be described in Section

3) suggest that the two-point correlation model may perform reasonably well for

axially-symmetrical turbulence (in particular for compression).

The linear models tested here can be considerably improved by accounting for

the dependence of the two-point correlations on the mean velocity gradients, and

in addition on the mean scalar gradient for correlations involving the scalar fields.

Our study suggests that both the irrotational and rotational components of the

mean deformation rate should be included in such extensions. Detailed exploration
of these possibilities was not conducted.

3. Linear pressure-strain model

We considered here the model of Naot, Shavit and Wolfshtein (1973, hereafter

referred to as NSW ) or that of Launder, Reece and Rodi (1975, hereafter referred

to as LRR) (the two models are identical, although the derivation is quite different).

In both models the rapid pressure-strain terms are related to the Reynolds stresses

and velocity gradients by a single coefficient _b (for NSW) or 6'2 (for LRR). The

test here was to calculate the value of q_ corresponding to different Reynolds stress

components from the simulation data base for the rapid term in various flows.

In Figs. 5a and b, the calculated value of the NSW coefficient _bis plotted against

total strain for the axisymmetric expansion and contraction flows, respectively. The

data base used was from Lee et al. (1985) and the simulation details may be found

there. The scatter is acceptable, but (at least in the compression) the value of _b

changes with the strain (which corresponds to time in this case). This situation is

typical for all the compression cases studied, but not to all expansion cases.

In the case of shear flows it was impossible to get a single value of _b(from different

Reynolds stress components, indicated as the subscript on _b in the figures). The

behavior of the homogeneous shear flow is very similar to the plane channel and

boundary layer shown in Figs. 6a and b, respectively. The _b values obtained from

different stress components differ a lot amongst each other but do not change much

with the distance from the wall (in the log- layer). These results make the linear

model unsuitable for shear flows. However, if we do not require tensorial symmetries
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in the model, it is possible to use different values of qb for different components. In

this case it may be possible to use such a linear model.

We tried to seek a correlation of the total pressure terms with the three model

constants suggested by NSW. The coefficients/_, 7, A were computed for the homo-

geneous shear case. This model appears to be a logical choice, as most coefficients

do not change rapidly as a function of the nondimensional time St.

An even better result is obtained if we consider the combined total pressure

Conclusions

We now summarize our conclusions from the present work. Linear two-point

correlation models appear to be imperfect even for simple turbulent flows. For shear

flows it is necessary to relate the two-point correlations not only to the Reynolds

stresses, but also to all mean velocity gradients and mean scalar gradients. Even

so, it may be necessary to use nonlinear modeling to account for asymmetries.

The current linear models for the pressure-strain terms (in the models considered)

can work only if different values of the coefficient _bare used for each direction, but

then the evolution of _b and its spatial variation is a serious problem. Considerable

improvement may be obtained if we consider the total pressure-strain terms. The

models work even better when the total pressure-strain terms are combined with

the viscous decay terms.

With everything said, we should bear in mind that all these conclusions are based

o1: low Reynolds number turbulence. It is desirable to confirm these conclusions by

comparison with Large Eddy Simulations at higher Reynolds numbers.
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in y-direction (Scalar-B); c) Scalar gradient in z-direction (Scalar-C).
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Overview of Research by the
Turbulence Structure Group

Unlike the other groups, the people in the Turbulence Structure group were pri-

marily experimentalists with the exception of Landahl. The Summer Program thus

provided a unique opportunity for these experimentalists to assess the numerical

data in comparison with their own experimental data, and to extend their previous

work using full 3D turbulence fields. The Group expressed a particular interest in

investigating temporal evolutions in addition to the spatial variations of the orga-
nized turbulence structures.

The invited participants were:

Dr. Henrik Alfredsson (K. T. H., Sweden)

Dr. Arne Johansson (K. T. H., Sweden)

Professor Ron Blackwelder (U. S. C.)

Dr. Jerry Swearingen (U. S. C.)

Professor Yann Guezennec (O. S. U.)

Mr. Dan Henningson (F. F. A., Sweden)

Professor Fazle Hussain (U. Houston)

Mr. Jinhee Jeong (U. Houston)

Professor Marten Landahl (M. I. T.)

Mr. Kenny Breuer (M. I. T.)

The local participants were:

J. Kim (NASA Ames)

P. Spalart (NASA Ames)

G. Coleman (Stanford University and NASA Ames)

U. Piomelli (Stanford University and NASA Ames)

S. Robinson (Stanford University and NASA Ames)

During the first two days of the Summer Program, the following items were

identified as unifying themes for the group:

• Detect significant structures

• Compare with experimental results

• Observe space-time evolutions

• Implement improved averaging schemes

• Investigate flow instability

With these unifying themes in mind, the Group was divited into several teams

and each team proceeded to investigate the organized structures in wall-bounded

shear flows using the databases generated by Kim, Moin & Moser (channel) and
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by Spalart (boundary layer). Data were prepared in time intervals short enough

(At + = 3) to accomodate the study of the temporal evolution.

The most significant result from the Turbulence Structure Group as a whole con-

cerned the temporal evolution of the organized structures in wall-bounded shear

flows. Several different detection schemes, ranging from a simple visual method to

rather sophisticated iteration procedures, were used to detect the organized struc-

tures. The resultin_ structures were sli_htlv different from each a|.her_ ._ince e_ch

scheme emphasized different aspects of the structures; however, these structures

were also related to each other in many respects. For example, the internal shear

layer investigated by Alfredsson and Johansson was generally observed between

the structures associated with fourth- and second-quadrant events investigated by

Guezennec (see Fig. 1). In all cases, the structures retained their coherence for

much longer time than expected, and consequently, they could be tracked over a

long streamwise extent. Typically, tile organized structures persisted over a period

on the order of t + _ 100, and they could be tracked in space on the order of z +

1000. The pictures emerging from these investigations suggest that the organized

structures do not go through violent break-up processes, as perceived from previous

studies, but rather diffuse slowly into incoherent motions. The spatial structure,

however, was highly localized in space with smail-scale motions within the struc-

ture. When such a structure passes a fixed probe in space, it can leave signatures

that might look like a violent break-up process. To confirm this conjecture, it would

be worthwhile in a future study to perform in sittt comparison between the spatial

distribution of a detected structure and the temporal signature at a fixed point

when the structure passes by.

Brief summaries of each team effort are given in the following:

Johansson, Alfredsson and Kim studied the formation and evolution of shear-

layer-like flow structures in the buffer region of wall-bounded turbulent shear flow

that were associated with turbulence production. The structures were found to

retain their coherence over streamwise distances on the order of 1000 viscous length

units, and propagated with a constant velocity of about 10.5 u,- throughout the

near wall region. The shear-layer structures were found to be important contrib-

utors to the turbulence production: the conditionally averaged production at the

center of the structure was almost twice as large as the long-time mean value. In-

dividual shear layers often showed a strong spanwise asymmetry which was lost in

conventional conditional averaging procedures.

Breuer, Landahl and Spalart performed numerical simulations, in which

structures similar to those described by Alfredsson and Johansson were used as

initial velocity fields, surrounded by a laminar boundary layer. The objective of

this study was to investigate the dynamics of such structures in isolation, which
made them easier to detect and follow in time. It was found that the structure

associated with a fourth-quadrant event upstream of a second-quadrant event grew

much more rapidly than that associated with a second-quadrant event upstream
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of a fourth-quadrant event. This is consistent with the fact that one finds more

energetic events of the former type than of the latter in turbulent flows.

Guezennec, Piomelli and Kim implemented several ensemble-averaging tech-

niques (VITA, quadrant technique, techniques based on wall shear, etc) to deter-

mine organized structures in the wall-bounded flows. The results were in good

agreement with his experimental results. It was found that the size of the detected

structures in wall units was a function Reynolds number, and approximately scaled

with the boundary layer thickness. Since detected instantaneous structures respon-

sible for turbulence producing events were mostly asymetric, the ensemble-averaging

process was improved by taking the asymmetry of the turbulence structures into

consideration. The resulting structures were strongly asymmetric, suggesting that

conventional ensemble-averaging schemes are misleading in that respect. It was also

observed that these structures were persistent over a time on the order of 50 viscous
time units.

Hussain, Jeong and Kim applied a conditional sampling technique designed

to detect coherent vorticity through an iteration procedure to the above mentioned

databases, as well as to a homogeneous shear flow field, to educe coherent structures

from each flow. Many characteristics of the detected structures were quite similar

to those of the mixing layer observed experimentally by Hussain and his colleagues:

the topology consisted of saddles and centers, the saddle region being the location of

maximum incoherent Reynolds shear stress and maximum shear production. The
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effect of shear on the coherent structure was also investigated by comparing the

structure obtained in the wall region (high shear) with that obtained in the outer

layer (low shear).

Hussain (in collaboration with Kim and Spalart) also studied the propagation

speeds of the velocity, pressure and vorticity by examining cross-correlations be-

tween two fields at different times. It was found that the propagation speeds for

velocity and vorticitv were ahnost the same throu_hcmt the ch__,,_e! __nd bo,_,,__.d_ry

layer. The propagation speeds were constant (0.55 Uc) in the wall region (y+ < 15)

and slightly less than the local mean outside this region. The value 0.55 Uc is very

close to the value obtained visually by Alfredsson and Johansson. The propagation

speed for the pressure was also constant in the wall region but much higher than the

others (0.75 Uc), whereas in the outer layer it was almost the same as the others.

Hussain (in collaboration with Kim and Coleman) investigated the Taylor hy-

pothesis of frozen turbulence by directly evaluating the terms involved. Three dif-

ferent propagation speeds -- mean velocity, local velocity and filtered local velocity

-- were used for the evaluation. It was found that the hypothesis was surprisingly

good except very close to the wall region. It was also found that the departure from

the hypothesis was not directly associated with large-scale structures. It should be

an worthwhile effort to pursue further to examine which neglected terms contribute

most to the departure from the hypothesis in the wall region.

Swearingen, Blackwelder and Spalart investigated flow instabilities associ-

ated with shear layers by examining the structure of the normal shear layer (Ou/Oy)

and the spanwise shear layer (Ou/c3z). They found that a strong shear and an in-

flectional velocity profile existed surrounding the low speed region, and more im-

portantly, they persisted up to 60 u/u_ indicating sufficient time for an instability

to develop. The low-speed streaks developed an oscillatory motion which increased

in time (also indicative of instability) and eventually the undulating portion of the

streaks appeared to break up into chaotic motion.

Landahl, Kim and Spalart examined the basic hypothesis of his "active-

layer" model for wall-bounded turbulence. The model assumes that the non-linear

(fluctuation-fluctuation) terms are large only in a thin layer near the wall, and

hence, the turbulence in the region outside the active inner layer can be modeled as

a linear response driven by the active layer. Preliminary investigation indicated that

the non-linear effects were indeed strongest near the wall with a maximum around

y+ = 20 and, outside the near-wall region, they involved primarily the cascading

mechanism to dissipative scales of motion. This model may lead to a reasonably

simple procedure for determining the Reynolds stresses and other statistical quan-

tities through a comparatively simple linear calculation making use of a universal

model for the non-linear processes in the near-wall region.

Henningson, Landahl and Kim used a kinematic wave theory to investigate

the cause of the rapid growth of waves observed at the wingtip of a turbulent

spot in plane Poiseuille flow. It was found that the qualitative behavior of the
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wave motions was well described by Landahl's breakdown criterion: that is, using

the breakdown criterion together with the requirement of exponential growth, the

qualitative behavior of normal group velocity was able to select a wave number,

wave angle and phase velocity comparable to those observed in the simulation.

J. Kim



Center for Turbulence Research
Proceedings of the Summer Program 1987

N88-23110
237

Shear-layer structures in near-wall turbulence

By A. V. Johansson 1, P. H. Alfredsson 1, and J. Kim 2

The structure of internal shear layer observed in the near-wall region of turbulent

flows is investigated by analyzing flow fields obtained from numerical simulations of

channel and boundary-layer flows. It is found that the shear layer is an important

contributor to the turbulence production. The conditionally averaged production

at the center of the structure was almost twice as large as the long-time mean

value. The shear-layer structure is also found to retain its coherence over streamwise

distances on the order of a thousand viscous length units, and propagates with a

constant velocity of about 10.6 u_ throughout the near wall region.

1. Introduction

The formation and evolution of shear-layer-like structures in the near-wall region

of turbulent flows have been recognized to be intimately coupled to turbulence

production. Most of the information on these structures has been obtained from flow

visualizations, Mthough probe measurements have provided a limited quantitative

information. Computer-generated data bases, obtained from nmnerical simulation

of turbulent flows which contain velocities and pressure fields in three-dimensional

space and time, make it possible to study these structures in more detail, especially

regarding their space-time evolution.

The main body of the results presented here has been obtained from simulation

data for turbulent channel flow at a Reynolds number of 180 (based on half-channel

height and the friction velocity) with a grid of 128 × 129 × 128 points. The grid

spacing in terms of viscous units was 17.7 in the streamwise and 5.9 in the spanwise
direction.*

Very strong and dynamically important (for the process of turbulence production)

shear-layers have been shown to exist in the buffer region of near-wall turbulent

flows, and are related to the lift-up of low-speed streaks from the viscous sublayer.

A characteristic feature of these shear layers is, by definition, a high value of the

instantaneous velocity gradient Ou/Oy, but since these structures become highly

inclined due to the mean shear, the streamwise velocity gradient (Ou/Oz) across

the shear-layer also becomes large. In experimental investigations, a fixed observer

1 Department of Mechanics, The Royal Institute of Technology, S-10044 Stockholm, Sweden.

2 NASA-Ames Research Center.

* x, y, and z denote the streamwise, normal, and spanwise coordinates normalized by the viscous

length scale. Similarly, u, v, and w denote the corresponding fluctuating parts of the velocity

normalized by the friction velocity ur. Also, other quantities are normalized by viscous scales

unless stated otherwise explicitly.
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will see a high value of the temporal derivative of the streamwise velocity and a large

change in u as the shear-layer passes by. This feature is utilized in the so-called

VITA (variable interval time averaging) technique which has been used in various

experimental investigations (see, Blackwelder & Kaplan, 1976, and Johansson &

Alfredsson, 1982, for example) to detect shear-layer structures in boundary layers

and channel flows. With this detection scheme, an event is considered to occur

when the variance of u averaged over a "short" time T exceeds a chosen threshold

ievei, k, times the long-time- averaged variance (i.e., u_m s). The detection position

is normally chosen in the buffer region. In the analysis of computer-generated data

bases, a spatial counterpart, VISA, is used, where the averaging length will be

denoted as L (see Kim, 1985). In the present study, this method was extended by

an event-centering technique (see Section 2).

Results for the channel-flow case will be presented in Section 2 concerning the

three-dimensional spatial structure of the internal shear layer as well as their propa-

gation characteristics and their development in time. These results will be compared

with previously published data obtained from the GSttingen oil channel (Johansson,

Alfredsson & Eckelmann, 1987) for a comparable Reynolds number. Comparisons

concerning frequency of occurrence of shear-layer structures will also be made with

hitherto unpublished oil-channel data by Johansson, Alfredsson & Eckelmann. In

Section 3, some results from turbulent boundary-layer flow at two different Reynolds

numbers will also be presented. A short summary and conclusions are given in Sec-

tion 4.

2. Channel-flow results

The first step in the detection of shear-layer structures in the buffer region was

to compute the locally averaged variance (or VISA-variance) for various zz-planes.

For the following channel-flow results, the detection was applied at y = 15 with

a threshold level (k) of 1.0. The resulting regions of high variance, indicating the

existence of strong shear layers, give a spatially spotty picture (Fig. 1). In Fig. 1

the variance was averaged over 11 grid points in the z-direction, corresponding to

about 200 viscous length units, and about 30 regions with levels above 1.0 can be

observed. In the present, approach, these regions were identified, i.e., their maxima

were located and followed from their formation to their disappearance for a time

sequence of 141 viscous time units (t.). Each time step was separated by three

viscous time units.

As examples, the space-time history of three high-variance islands marked by A,

B, and C in Fig. 1 is shown in Fig. 2, where consecutive plots are separated by

12t.. Event C is here followed over more than 70t., during which it has traveled

approximately 900 viscous units, corresponding to 5 channel half-heights. However,

the shear layer can be identified over considerably larger distances. The mean sur-

vival time of the shear layers, such as those indicated in Fig. 1, was approximately

50t., but some strong shear layers could be followed throughout the entire extent

of the time studied (141t.).

If the events in Fig. 1 and those detected at y = 15 near the opposite wall are

divided into intervals of the maximum variance amplitude, the low amplitude will
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FIGURE 1. Contours of the streamwise velocity variance averaged over a distance

of 200 viscous length units at y=15. Contours start at 1.0 with an increment of 0.5.
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The space-time development of the variance associated with the events

1. Time separation between plots is 12 viscous time

dominate: i.e., at a given time there are many events (regions of high variance)

with a maximum variance just above the threshold. This is illustrated by the open

symbols in Fig. 3. On the other hand, if all these events are traced in time to locate

the time at which the shear layer is strongest, i.e., the time for which the event has

its largest variance amplitude, the picture becomes different (+ symbols in Fig. 3).

The most probable variance maximum is now found in the interval 1.5 - 2.0, and
values close to 3.5 were observed.

The propagation velocity of the shear layers could be determined (see Fig. 4)

from their space-time history, and was found to be 10.6 with a standard deviation

of -4-1.0. This is substantially lower than the value 13.0 obtained from an experi-

mental investigation (Johansson, Alfredsson & Eckelmann, 1987) at about the same

Reynolds number (10 % higher). In that study, the VITA-detection was carried out
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FIGURE 3. Variance amplitude distribution of the events in Fig. 1 (also included

are the events detected at the opposite side of the channel: o, the amplitude at the

time of detection, +, the maximum amplitude of each event when followed over its

life-cycle.

at y = 15, and a second probe was positioned at various y and x-positions down-

stream of the detector probe (e.g., at y = 20). However, the averaging time was

10t., which would correspond to a shorter averaging length than that used in the

present analysis of the numerical data. Also, there is an inherent difference between

spatial and temporal data evaluation.

The significance of these flow structures for the flow dynamics in the near-wall

region depends on their frequency of occurrence (or probability to occur within a

given area). In order to enable comparisons with experimental results obtained with

a stationary probe, the average number of detections per z-position was determined

and normalized by the streamwise extent of the domain (2260) divided by the

propagation velocity (10.6). This means that a shear layer, if signified by a region

of high variance extending over several z-positions, gets counted several times, but

gives the equivalent of the number of detections per unit time for a fixed probe.

Also, the averaging length was converted to an equivalent averaging time by use

of the propagation velocity. The agreement is excellent (see Fig. 5) between the

present results obtained in this manner and the experimental results (unpublished

results by Johansson, Alfredsson, & Eckelmann). One should bear in mind that the

scaling used here is immaterial, since the Reynolds number is approximately the

same for the two sets of data.

Johansson, Alfredsson & Eckelmann (1987) studied the spatial structure in the

symmetry plane of the shear layers. Their results are shown in Fig. 6, where contour

lines of the streamwise disturbance velocity normalized with the local tins-value are

plotted in the xy-plane. These results may be compared with the corresponding

results (Fig. 7a) obtained from the computer-generated data base for channel flow.



Shear.Layer Structures 241

700

350-

x 0

-350

-700

S

-6o -3o ' 6 ' 3o 60
t

J

FIGURE 4. Streamwise position of the maximum variance as fuction of time for

60 diffrent events. The plot is centered around the maximum value of the variance
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layers.

Note that the same contour levels are used in Figs. 6 and 7a. An ensemble average

of 60 events detected at both sides of the channel at one time-step are shown. The

ensemble averaging here involves centering of the individual realizations in both

the z (as in conventional conditional averaging) and the z-direction. Hence, boxes

600 long, 200 wide, and 180 high (the entire half-channel height) in viscous units

centered around the point, of maxinmm variance (at y = 15) are averaged. Tile

agreement between the experimental and simulation data is seen to be good. In

the following, conditional averages (denoted by < >) will be presented in absolute

scale, i.e., normalized by u,- (or other appropriate viscous scales).

Figs. 7b and c show the conditionally averaged u and v in the zy-plane. An

interesting feature is that, close to the wall, the lifted low-speed fluid is pushed

back towards the wall, resulting in a so-called wall-ward interaction. It is also

quite evident that there is strong streamwise shear associated with the detected

structure and that the regions of coherent velocity are confined below y _ 50. The

corresponding results in the zz-plane for y = 15 are shown in Fig. 8. The spanwise

scale of the primary low- and high-speed regions is seen to be about 50, which is the

same as the distance between high- and low-speed streaks in the viscous sublayer.

The maximum deviation from the long-time mean in the low- speed region in Fig.

8a is almost twice as large as on the high-speed side of the shear layer. Similarly,

the amplitude of the normal velocity is also much higher on the downstream side,

which also gives a strong uv-peak in that region (Fig. 8c). The uv-contribution on

the sweep side is practically negligible at this y-location.
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It was found that spanwise centering of the events is essential to obtain reasonable

quantitative estimates of the associated Reynolds stress contributions, as is illus-

trated by Figs. 9a,b. In the latter, no such centering was applied, and the resulting

maximum uv is drastically reduced on the ejection side. It should be noted that

(to the present authors' knowledge) all previous results, experimental as well as nu-

merical, presented in the literature have been obtained without spanwise centering.

The reduction with no spanwise centering can be attributed to the resulting jitter

in the spanwise separation between the uv-peak and the detector position, and the

fact that the spanwise scale of the uv-peak is rather small.

In conventional conditional averaging procedures, with or without spanwise cen-

tering, symmetric patterns are the result of homogeneity of the flow in the spanwise

direction. Instantaneous shear-layer structures, on the other hand, often tend to

develop strong asymmetries as they propagate downstream. This can give large

values of the spanwise gradient of the streamwise velocity at the center of the shear

layer. The average of the (absolute) spanwise gradient at the detection point for

the events shown in Figs. 7 and 8 was found to be about 0.20 of the mean gra-

dient at the wall, or 2/3 of the local mean gradient. In reality, it is more likely

to find an asymmetric structure than the symmetric pattern in Fig. 8a. In order

to retain the spanwise asymmetry, often found in the individual events and also in

the conditional average, an asymmetry was imposed by switching the z-coordinate

according to the sign of the spanwise gradient at the detection point (Fig. 10). The

resulting averages illustrate a mechanism for creation of high streamwise gradients
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in channel flow at Re=200 (Johansson, Alfredsson & Eckelmann, 1987) showing

streamwise velocity disturbance (< u >/u,.ms(V)) in the symmetry plane. Events
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(L=200 and k=l) and the asymmetry condition (same data as in Fig. 8a). Data is
at y=15 and contour increment is 0.5.

through spanwise motions of the high- and low-velocity regions. Such gradients play

a relatively important role for the generation of conditionally averaged turbulence

production (as will be discussed below).
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The often occurring asymmetric features of the shear layers are illustrated by the

space-time development, of a single event in Fig. 11, where the frame of reference

is chosen so that the center of the shear layer is stationary. The xy- plane view

clearly shows the sharpening of the shear layer due to the action of the mean shear,

whereas the planar view illustrates a meandering of the high- and low-speed regions,

resulting in steep streamwise and spanwise gradients.

A key issue for the importance of coherent structures in turbulent flows is their

role in the turbulence-production process. One can show that the conditionally

averaged production of turbulent kinetic energy for a plane two-dimensional flow

can be written as

__ _ -- Ou OudU u 2 < > -_ii(<
<P>=- dy

-- Ov -- cow

-v_<_yy>-W_<_-_z >.

(1)

The only term that remains in the long-time-averaged sense is < uv > dU/dy.

However, the total conditionally averaged production (Fig. 12a) is substantially

higher than what can be accounted for by this term (Fig. 12b). This is mainly

due to strong gradients in the x- and y-directions of the conditionally averaged

streamwise velocity (Fig. 12c). The largest of these terms is the second term in

Eq. (1), which is illustrated in Fig. 13 where the production terms have been

averaged over an area of 300 × 40 (streamwise and spanwise extent, respectively).

Integrating the conditional production out to y = 30 gives an average over this

volume which is almost twice as large as the long- time mean value. Moreover,

the dissipation of turbulence energy is large in the vicinity of the shear layer (Fig.

14). It is noteworthy here that the conditionally averaged Ou/Oz does not enter the

left-hand-side expression of Eq. (1). Hence, although there exist high values of the

spanwise gradient of u at the edges of the shear layers, they do not in themselves

imply contributions to the associated turbulence production.

3. Boundary-layer results

Computer-generated data bases for a turbulent boundary-layer flow at two differ-

ent Reynolds numbers were also analyzed. These data bases are described in detail

in Spalart (1987). In order to investigate whether the size of the near-wall structures

shows any significant Reynolds number variation, the ensemble-averaging procedure

was carried out for momentum-thickness Reynolds numbers (Reo) of 670 and 1410

(Figs. 15a,b). One may note that the structure is somewhat larger in terms of

viscous units for the higher Reynolds number, especially on the sweep side. This

Reynolds number dependence indicates that there is some influence of the outer

flow on the scale of inner-layer structures, and hence some interaction between the

outer and inner regions of the flow. However, the influence is rather weak, and the

structures are mainly determined by the conditions at the wall.
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stress induced production < -uv > dU/dy. (c) < P > - < -uv > dU/dy.

4. Conclusions

• Shear-layer structures are found frequently in near-wall turbulence and often have

many features in common with the conditionally averaged structure obtained with

the VITA or VISA methods.

• Coherent shear-layer structures in the near- wall region (y+ < 15) were found

to propagate with a velocity of about 10.6u¢, and retained their coherence over

streamwise distances on the order of a thousand viscous length units.

• Shear-layer structures were found to be important contributors to the turbulence

production, and a substantial part of the conditionally averaged production was
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shown to be generated by strong gradients in the streamwise disturbance velocity.
• The dominant associated uv-contribution was found to be associated with an

ejection type of motion on the downstream side of the shear layer.

• Individual shear layers often develop a strong asymmetry (which is lost in con-

ventional averaging procedures) as they propagate downstream.
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puters and many lively discussions. We also wish to thank Philippe Spalart for

providing the boundary-layer data, and Kenny Breuer and Marten Landahl for
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The Simulation of Coherent Structures

in a Laminar Boundary Layer

By KENNY BREUER 1, MARTEN T.

LANDAHL 1, AND PHILIPPE R. SPALART 2

Introduction

Coherent structures in turbulent shear flows have been studied extensively by

several techniques, including the VITA technique (Alfredsson & Johansson 1984,

Blackwelder & Kaplan 1976, Johansson, Alfredsson & Eckelmann 1987) which se-

lects rapidly accelerating or decelerating regions in the flow. "Positive" events (in

which the streamwise velocity increases while passing a fixed probe) have been found

(Alfredsson & Johansson 1984, Johansson, Alfredsson & Eckelmann 1987) to be in-

clined shear layers with a strong associated Reynolds stress. If these structures are

responsible for a large part of turbulence production, then an important question

is how are they formed and how do they evolve in the flow.

Present study

The motivation for the present work is the idea that the evolution of coherent

structures in a turbulent flow follows simple dynamics which are not dominated by

the turbulent flow field. This idea has been studied by Russell and Landahl (1984,

also Landahl 1984) who developed some approximate models for the dynamics of

such structures, but in order to study them more completely a full-scale calculation

is necessary. Based on the assumption that the dynamics of the shear layer's evo-

lution are largely independent of the random part of the flow, one should be able

to capture the essential features by looking at the evolution of a disturbance in a

laminar boundary layer. This approach has recently been illustrated in Acarlar &

Smith's study of hairpin vortices (1987).

A localized disturbance was studied numerically using a three-dimensional, un-

steady Navier-Stokes code (Spalart 1986). The mean flow considered was a Blasius

boundary layer and the initial velocity perturbation, shown at one y-location in

figure 1, was the same as that used by Russell & Landahl (1984), consisting of

two pairs of counter-rotating vortices. Landahl (1984) has shown that such a flow

would result from an instantaneous peak of u'v', and so one would expect to find

perturbations of this kind following high Reynolds-stress production in a turbulent

1 M. I. T.

2 NASA Ames Research Center
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flow. Analytically, the disturbance has the following form:

Iu =0

, AzyS(1 - 2z 2) e_(_%y_+2)'/3

, -Axz(3y 2 - 2y 4) e_(_%_%._)

where A is the amplitude of the disturbance and the coordinates are scaled by

some characteristic lengths l_, l_, and l_. For the cases presented, the scaling used

was l_ = 5, ly = 1.2, l_ = 6, and A was chosen to be 0.2. This gave an initial

perturbation in v and w of about 2% and a streamwise and spanwise extent of

about 10 (all velocities are normalized by the free stream, and all lengths by the

displacement thickness at the point of generation). The starting Reynolds number,

Re6., was chosen to be 945. Some calculations were also performed with a negative

amplitude, A = -0.2, representing an initial condition of downward flow, followed

by upward motion, and simulating a "negative" VITA event. Several grid resolutions

and box sizes were used to ensure that there was no grid dependence. Most of the

results reported here were calculated on a 642 grid in the horizontal planes with 40

Jacobi modes in the vertical direction. The solution at all times remains symmetric

with respect to the z = 0 plane.

Results and discussion

Figures 2 and 3 show the evolution of the streamwise velocity perturbation u' (all

of the results presented here are plotted in a frame of reference moving at 0.4U_,

chosen so as to 'freeze' the structure in the plotting window). At T = 0.0 there is

no longitudinal component of the disturbance but one quickly develops as the liftup

of slower fluid creates a velocity defect region, followed by a accelerated region of

fluid pulled down from the upper part of the boundary layer. Because of the mean

shear, the fluid elements further from the wall will be advected faster than those

closer to the wall resulting in the stretching out and intensification of the structure

in the streamwise direction as it propagates downstream. This is clearly seen in

the second frame, T = 81.4, where a strong internal shear layer has formed. The

shear layer is not quite symmetric as the ejection side (downstream, where v' is

positive) is somewhat stronger than the sweep side (upstream, where fluid moves

toward the wall) which is in agreement with the results of Johansson, Alfredsson and

Eckelmann (1987) in a turbulent flow. At a later time T = 116.9, the breakdown of

the shear layer is becoming evident from the greatly increased amplitude and the

appearance of finer scales in the disturbance velocities, although the exact nature

of the breakdown is as yet unclear.

The spanwise structure of the disturbance close to the wall is seen in figure 3.

What is especially striking here is the development of long "streaks" of alternating

high and low speed fluid. The streak spacing is closely related to the spanwise

dimension of the original disturbance.
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The Reynolds stress distribution is shown in figure 4. As one would expect, -u'v'

increases as the disturbance grows and it is primarily concentrated in the two regions

ahead and behind the shear layer. The downstream peak is stronger, consistent with

the larger perturbation levels in that region. The Reynolds-stress distribution is also

remarkably consistent with the structure seen in the fully turbulent flow (Johansson

& Alfredsson 1982).

Figure 5 shows the amplitude of the disturbance as it propagates downstream.

Two results are plotted: the solid line is the shear-layer disturbance (A = 0.2),

while the dashed line indicates the growth of the "inverse disturbance" (A = -0.2).

While this disturbance does grow, its growth seems to be linear, in contrast to

the shear layer which grows exponentially. This dramatic difference serves to show

that it is the structure of the disturbance, and not only its initial amplitude that

leads to the rapid growth. One possible reflection of this in experimental results

is that the frequency of detection for negative VITA events is considerably lower

than for positive events. While the results are not shown here, the negative case

also develops a long streaky structure and at later times an unstable shear-layer

structure does develop off the center-line, perhaps hinting that it too will undergo

a rapid growth when that mechanism becomes dominant.

Summary

The evolution of a localized disturbance in a laminar boundary layer shows strong

similarity to the evolution of coherent structures in a turbulent wall-bounded flow.

Starting from a liftup-sweep motion, a strong shear layer develops which shares

many of the features seen in conditionally-sampled turbulent velocity fields. The

structure of the shear layer, Reynolds stress distribution and wall pressure foot-

print are qualitatively the same, indicating that the dynamics responsible for the

structure's evolution are simple mechanisms dependent only on the presence of a

high mean shear and a wall and independent of tile effects of local random fluctu-

ations and outer flow effects. As the disturbance progressed, the development of

streak-like high- and low-speed regions associated with the three-dimensionality of
the disturbance was also observed.
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Conditionally-Averaged Structures
in Wall-Bounded Turbulent Flows

By Yann G. Guezennec, ] Ugo Piomelli 2 and John Kim 3

The quadrant-splitting and the wall-shear detection techniques were used to obtain

ensemble-averaged wall layer structures. The two techniques give similar results for

Q4 events, but the wall-shear method leads to smearing of the Q2 events. Events

were found to maintain their identity for very long times (,,_ 50t +). The ensemble-

averaged structures scale with outer variables. Turbulence producing events were as-

sociated with one dominant vortical structure rather than a pair of counter-rotating

structures. An asymmetry-preserving averaging scheme was devised that allowed

to obtain a picture of the "average" structure which more closely resembles the
instantaneous one.

1. Objectives

It was our goal to study coherent structures found in turbulent channel and

boundary layer flows using the direct numerical simulation data bases.

Specifically, the following issues were examined:

• Comparison between the ensemble-averaged structures detected by the quadrant-

splitting technique and those obtained by the wall-shear detection scheme.

• Scaling of the size of these ensemble-averaged structures with Reynolds number.

• Tracking of individual events (quadrant detected and wall-shear detected) in time

to determine their propagation velocity and their persistence.

• Comparison between the structures obtained by ensemble-averaging and those

observed instantaneously in the flow.

• Design of better detection and averaging procedures to yield average structures

more representative of the instantaneous ones.

2. Procedure

Most of the present results were obtained from the direct numerical simulation of a

turbulent channel flow at a Reynolds number Re_ = 180 based on channel halfwidth

6 and friction velocity (Kim, Moin and Moser, 1987). Some additional results were

also obtained from the direct numerical simulation of a turbulent boundary layer at

Reo = 670 based on momentum thickness # and friction velocity (Spalart, 1987).

1 Ohio State University

2 Stanford University

3 NASA-Ames Research Center
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Coherent structures, defined here as large contributors to the turbulence produc-

tion process, were detected using two techniques. The first one was the quadrant-

splitting technique, which identified events characterized by a fluctuating Reynolds

stress larger than 3.5 times the product of the long-term r.m.s, of the streamwise

(u') and normal (v') velocity fluctuations. The detection was performed at y+ = 12

and events were sorted into second (Q2) and fourth (Q4) quadrant in the usual

manlier.

Th ....... ._ __,^_,: ..... 1_ , ..... imique used experimentally.... o,.._v.tAu u_t,_._,_lt._ll t,C_lllllqlLl.lU Wd,_ LII¢_ w_ll-snear tec

by Nagib and Guezennec (1986). With this technique, Q4 events were detected

whenever the fluctuating instantaneous wall stress T_2 ,-_ OuW/Oyl_ exceeded its

r.m.s, intensity by more than 2.8 times while the spanwise shear r_2 -,_ Ow'/Oy[_, was

small (less than half its r.m.s, intensity). Q2 events were detected in a similar fashion

when -7"_ was over 1.8 times its r.m.s, value. The difference in threshold values

for the Q2 and Q4 events was necessary to detect a similar number of events and is

consistent with the positive skewness of the wall shear probability distribution.

For both techniques, centering in the streamwise (z) and spanwise (z) direction

was performed whenever several neighboring points met the detection criteria by

selecting only the one at which the perturbation was maximum. Ensemble averages

of tile three velocity components were performed for each type of event and detection

technique. An average of 100 events were detected with each scheme for the channel

flow data, and 500 for the boundary layer data (due to the larger spatial extent of the

computational box). Results of the ensemble-averaging procedure were examined

by vector maps in various cross-cuts through the events.

3. Results

3.1 Validation of wall-shear detection technique

Results obtained with the two detection technique were compared in the channel

flow case. Figure 1 shows such a comparison for a streamwise cut through the

centerline of the Q4 event. The two techniques yield essentially the same result.

Comparisons were also performed for various spanwise cuts (not shown here) and

confirmed this result. Figure 2 represents a similar comparison for the Q2 event.

Although the patterns are qualitatively the same, the quadrant splitting technique

yields a much more localized perturbation in the streamwise direction. The wall-

shear detection technique is not as selective for this type of event, resulting in a

lack of registration in the streamwise direction. This is consistent with the fact

that the Q2 events represent motion away from the wall, and are less detectable by

their imprint on the wall than the Q4 events. However, spanwise cross-cuts (not

shown here) are quite similar with both techniques, indicative of little smearing in

the spanwise direction.

$._. Scaling of ensemble.averaged structures

The effect of the Reynolds number on the size of the ensemble-averaged struc-

tures was then examined. In order to compare with the experimental results of

Wark, Nagib and Guezennec (1987), in which only two velocity components were
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FIGURE 1. Ensemble-averaged perturbation velocity maps of the fourth quadrant

events. The maximum velocity fluctuations in figure are approximately equal to

5u_-. (a) Events detected by quadrant splitting technique; (b) events detected by
wall shear technique.

I 1 I I I I I I I I I I I

100 t80 ::: : :: ::: : ::: : : :: : : : :::::::: f
y+ 60

20 : ; :: _ _'":":':z" _ ':":!iiii i!iiiiiiiiiiiiiiii
I I I i i

(a)
I I I 1 I I I I I I I 1 I

100 ......................... ..........

ii,,i!iiiiiii;iiiiiiiiiiiiiiiiiiiii
40 i i i i i ii "_=_:-'='_:.=.'--

i i i | i I ! i i i i i i

-200 0 200 400 600 800 1000
x +

(b)

FIGURE 2. Ensemble-averaged perturbation velocity maps of the second quadrant

events. The maximum velocity fluctuations in figure are approximately equal to

5ur. (a) Events detected by quadrant splitting technique; (b) events detected by

wall shear technique.
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the ensemble-averaged structures.

measured, a procedure similar to theirs was used to estimate the characteristic span-

wise length scale. At the streamwise location of the detection point, the streamwise

velocity perturbation was integrated over the height of the structure to yield a lo-

cal "perturbation displacement thickness". This procedure was repeated at various

spanwise positions. The characteristic spanwise length scale was then arbitrarily

chosen as the distance away from the centerline where this perturbation displace-

ment thickness became zero. This distance was checked visually to correspond

approximately to the center of the vortical structures detected. This procedure

was applied to the events detected by the gradient technique. Q2 and Q4 events

also yielded comparable results. Figure 3 shows the variation of this length scale,

e, with Reynolds number, Re0. The lowest Reynolds number (250) corresponds

to the channel flow data and the second point (670) correspond to the boundary

layer simulation. The upper two point were determined experimentally by Wark

et al. (1987). When the size is non-dimensionaiized with inner variables (u_ and

v), it increases with Reynolds number. On the other hand, it remains constant

when non-dimensionalized with outer variables (0) over a twenty-fold increase in

Reynolds number.

3.3. Propagation velocity and persistence

Quadrant-type events were tracked in successive time frames to determine their

propagation velocity and persistence. Time frames were 3 viscous time units apart,

so that the identification and matching of corresponding events in successive time

frames was unambiguous. The coordinates of each event were then recorded as a

function of time. Events were found to propagate in the streamwise direction with

very little meandering in the spanwise direction. Figure 4 illustrates the space-time

trajectories of the individual Q2 (top) and Q4 (bottom) events. The average slope

of these trajectories represent the propagation velocity of the events and was found



FIGURE4.
quadrant.

Conditionally.Averaged Structures 267

300-

150"

x+ 0-

-150"

-300'

300

200

100

x+
0

-150

-200

-300
-30

,b, j
":j-

I I

! ! / I !

-20 -10 0 10 20 30
t+

Space-time trajectories of events. (a) Second quadrant; (b) fourth

to be 9.3u_. for the Q2-type and 10.3u_ for the Q4-type events. The local mean

velocity at this y-location was 9.5u_. Moreover, it should be noted that the events

maintain their identity for a rather long time (of the order of 40 to 60 viscous time

units). This indicates that they do not break up under some rapid instability once

they have been formed. The high frequency oscillations observed in laboratory

measurements with a fixed probe are linked to their localized spatial extent and

propagation velocity. Similar tracking was also performed for wall-shear detected

events. They were also found to propagate at similar speeds and persist for similar

durations. This finding confirms that large wall-shear fluctuations are the imprint of

structures residing in the buffer or logarithmic layer and has important implications

for numerical modeling of the wall layer.

3._. Link between instantaneous and ensemble-averaged structures

Cross-stream vector maps of each individual quadrant event were examined to

understand the relation between the instantaneous structures and those obtained

from the ensemble-averaging process. While the averaged event resulted in a sym-

metric pair of counter-rotating vortical structures, due to the homogeneity of the
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flow in the spanwise direction, individual realizations differed greatly from this pat-

tern, in terms of size and strength of the structures and, in particular, of symmetry.

An example of such difference between the ensemble-averaged pattern and a typical

realization is shown in Figure 5. The instantaneous field shows the presence of a

strong vortical structure on one side and of a weak one on the other side. Based

on this visual evidence, a procedure to measure this asymmetry was designed. Cir-

culation was computed around a closed path (square for simplicity) on each side
_t,L^ __,--,: .... : ............ , , " f ' ti i -"v. vxt,._ ut.v_t.uloxt l.tV_tit, vo xxxca_utt_ elite _t, lt-tClt_tll O e_tCll vor ca structure. _mce

these structures appear in different sizes, the circulation F was computed around

four separate integration contours as illustrated in Figure 5b. For each contour the

circulation was averaged over both sides and all events to determine the choice of

an appropriate contour size. The results are shown in Figure 6 for the Q2 events.

The second contour contains the entire structure, and the average circulation r,,v

is maximum; along the larger paths the average circulation decreases due to the

effect of viscosity. Based on these observations, the second path was chosen and

the asymmetry of the event was estimated by the difference AF of the circulation

between the two sides. The normalized probability density function of this measure

of asymmetry is shown in Figure 7 as a function of AF normalized by Fay (the

probability density function was normalized so that its integral is 1 over the whole

distribution). This symmetry parameter has a bi-modal distribution, indicating

that the most likely event is strongly one-sided, i.e. associated with one dominant

vortical structure. Similar results were obtained for the Q4 events.

3.5. New ensemble-averaein9 technique

Based on the result of the previous section, a new ensemble-averaging procedure

was designed that recognizes the asymmetry of the individual structures. For each

event, the stronger side was identified by the procedure described above and the

individual structures were "flipped" about the centerline if necessary, so that the

strong structure was always on the same side. The ensemble averaging procedure

was then carried out as usual. The comparison between the conventional procedure

and this new one is shown in Figure 8 for the Q2 event. The average event is now

characterized by only one dominant vortical structure associated with a strong Q2

motion on the centerline. It is worthy to notice the presence of a rather strong Q4

motion on the other side of the structure. This is consistent with the observation

that Q4 and Q2 events appear often in pairs side by side. This average structure

resembles more closely the individual realizations (there is of course an equal prob-

ability of finding its mirror image). The fact that strongly asymmetric structures

(or possibly even single structures) are more likely to occur has an important impli-

cation on their dynamics. For example, the mutual induction effect for lifting away

from the wall commonly used to describe their evolution loses some of its appeal.

4. Conclusions

In summary, the following conclusions have been reached:

• The wall-shear detection technique works well for the fourth quadrant events, but

leads to substantial streamwise smearing of the second quadrant events. Events
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FIGURE 5. Comparison between the ensemble-averaged structure (top) and a

typical instantaneous structure of a second quadrant event (bottom), highlighted

with circulation integration paths. The maximum velocity fluctuations are approx-

imately equal to u_ in the top figure and to 2u,- in the bottom figure•

detected by both techniques have, however, sinfilar spanwise structures.

• Turbulence producing events (regardless of the method of detection, i.e. wall-

shear, quadrant-splitting or VITA/VISA events, which represent the interaction

of two opposite quadrant events) propagate at a speed of approximately 10u,-

in the wall region (y+ < 15), with the sweeps being slightly faster than the

ejections. They retain their coherence over a period of the order of 50t + and over

a streamwise extent of the order of 500¢ +. It is therefore unlikely that strong

instabilities convected with these structures lead to their catastrophic break up.

• The size of ensemble-averaged structures scales with outer variables, i.e. it ap-

pears to follow the growth of the logarithmic layer with the Reynolds num-

ber. Therefore, they become more and more distinct from the wall layer as the

Reynolds number increases. However, it must be noted that this scaling applies to

the ensemble-averaged structures, and possibly stems from the fact that a larger
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@

range of individual sizes exists at higher Reynolds numbers. This indicates the

need to perform more high Reynolds number experiments (physical or numerical)

to distinguish more dearly the hierarchy of scales associated with the coherent

structures•

Turbulence producing events were found to be associated with one dominant vor-

tical structure rather than a pair of counter-rotating structures. This represents

the first step in obtaining "sharper" ensemble averages which are more represen-

tative of the instantaneous flow topology. The correct kinematic description of

these structures will undoubtedly lead to a better understanding of their dynam-

ics, and more accurate structural information to be incorporated in turbulence

models.
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Structure of Turbulent Shear Flows

By A.K.M.F. HUSSAIN 1, J. JEONG 1 AND J. KIM 2

Introduction

The accuracy and spatial resolution of numerically simulated databases for tur-

bulent shear flows, like those generated at NASA/Ames, far exceed those typically

available in laboratory experiments. While there are limitations of the simula-

tions, in particular regarding low Reynolds number (a technological constraint)

and limited duration of flow that can be computed (an economic constraint), the

simulations have also the advantage that they enable the scientists to "measure"

quantities (such as enstrophy, pressure, dissipation, helicity, and pressure-strain rate

correlation) which are virtually impossible to measure accurately in the laboratory

(see Hussain, 1983, 1986). Simulations provide quantitative measures of flow fields

free from the effects of probe interference and from errors introduced by invoking

Taylor's hypothesis. The simulations thus accord heretofore unavailable unique op-

portunities for research into the structure of turbulence; such was our goal and the

centerpiece of our effort during the 1987 summer school of Stanford-NASA CTR.

Our research covered three different topics:

(1) Eduction of coherent structures,

(2) Measurement of propagation velocities of perturbations (such as velocity, pres-

sure, and vorticity) in turbulent shear flows, and

(3) Direct evaluation of the Taylor hypothesis.

In the following, we summarize our activities during the summer school in each

of these three categories. However, most of our effort was devoted to item (1),

which will occupy the bulk of this report. Recognizing that very little time was

available to either complete the post-processing or to even adequately digest the

results obtained, we venture to point out a few apparent interesting observations and

surprises, make some tentative conclusions and suggest specific areas of continuing

collaboration between NASA-Ames and University of Houston.

A. Eduction of coherent structures

Coherent structures, an embodiment of our search for order in disorder, has

been the focus of much of the research in turbulent shear flows in the past two

decades. The overwhelming majority of coherent structure studies has been based

on flow visualization, which is not only qualitative but can even be grossly mislead-

ing (Hussain, 1986). We need hard quantitative data regarding the distributions of

properties over the spatial extent of the structures and the dynamical roles of these

1 University of Houston

2 NASA-Ames Research Center
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structures. These structures being defined in terms of coherent vorticity (Hussain,

1980), the requirement of vorticity measurement presents a severe constraint. A

first simplification of this problem was to measure one component of vorticity only

and in one plane only--that in the azimuthal plane. The initial approach was to

perform phase-locked measurements triggered on the periodicity of the flow event

or of a forcing signal (Cantwell & Coles, 1983; Hussain & Zaman, 1980; Hussain,

Kleis & Sokolov, 1980). Note that structures in natural (unexcited) shear flows

undergo jitters of two kinds: initiation and evolutionary jitters. Via excitation, ini-

tiation of structure formation can be controlled, but the evolutionary jitter remains

uncontrolled. Thus eduction, even in periodically induced structures, must use a

local trigger at the measurement location instead of an upstream triggerma major

drawback of Cantwell & Coles' data.

The next step was to develop a scheme for eduction of coherent structures in an

unexcited flow by using a local footprint of passing structures (Zaman & Itussain,

1984). In parallel, efforts were devoted to develop an algorithm that can educe

structures in any fully developed turbulent flow without requiring any trigger sig-

nal. This resulted in a scheme which utilizes the measurement signal itself. Such

a technique (to be explained below) was first developed for eduction of structures

in the fully developed region of an axisymmetric jet (Tso, 1983) and was further

refined to educe structures in a turbulent plane wake (I-Iayakawa & Hussain, 1985).

This generic and robust scheme, which can be applied to data in any transitional

and turbulent shear flow, was also successfully applied to numerical simulation and

experimental data in a plane mixing layer (Metcalfe et al., 1985). The close agree-

ment between structures educed from numerical and experimental data is strong

evidence of the robustness of the scheme as well as a validation of the simulation.

Our goal in this area continues to be: (i) eduction of coherent structure topology

in different turbulent flows, (ii) understanding of turbulence phenomena in terms of

entrainment, mixing, production, and dissipation, and (iii) the dynamical role and

significance of coherent structures in various turbulent shear flows. This provides the

motivation for eduction of coherent structures from direct simulations of turbulent

flows. While the coherent structure topology and dynamics in the wall region of

a turbulent boundary layer would not be expected to be different from those in

the wall region of a channel, the outer layer structures must be noticeably different

between the two flows. Hence the motivation for studying coherent structures in a

flat plate boundary layer and a channel flow. These new data would establish how

coherent structures in the wall-bounded flows are different from coherent structures

in free shear flows, which have been studied extensively at University of Houston.

Having decided to especially focus on the coherent structures near the wall, which

are responsible for the most interesting events in wall-bounded shear flows, it was

necessary to separate the effects of the wall from those of shear. Hence the goal of

eduction of coherent structures in homogeneous shear flows.

The simulation data in a low Reynolds number, fully turbulent channel flow (Kim,

Moin & Moser, 1987), in a flat plate boundary layer (Spalart, 1987), and in two

homogeneous shear flows (Rogers & Moin, 1987; Lee & Reynolds, 1985) are used to
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educe coherent structures in these flows.

Eduction methodology:

Even though the eduction procedure, in principle, is based on the 3D vorticity

information in a flow field, experimental limitation forced us to implement the

procedure on one component of vorticity, namely the spanwise vorticity, w-,. In order

to permit meaningful comparison with experimental data, our earlier eduction from

numerical simulation was also based on only the w-, field of the simulation (Metcalfe

et al., 1985).

The eduction procedure is briefly outlined here. Readers can find further details in

our earlier papers. The eduction steps are as follows: (i) select a small y-range where

coherent structures are to be studied and obtain w-,(x, y) data from simulations in

various z-planes, but centered at the middle of this y-range (x, y, z are longitudinal,

transverse, and spanwise coordinates, respectively); (ii) smooth the _o-,(z,y) data

using a zero-phase shift filter; (iii) detect structures which are strong (i.e., peak

vorticity above a threshold tort ) and of a sufficiently large size; (iv) look for z-

symmetry of these vorticity concentrations; (v) accept w-, data from a plane of

symmetry (being careful not to accept two planes of the same structure).

The phase average of all realizations containing similar structures yields a coher-

ent structure. Note that a coherent structure is a stochastic quantity and may not

be observed instantaneously. The center (marked by the peak value) of smoothed

to-, contours is only a first guess, and is a useful reference for initial alignment of

various realizations, but may have nothing to do with the true center, which must

be determined from the ensemble averaging after proper alignment.

The eduction continues as follows: (vi) align to. with respect to the peaks of

smoothed contours and obtain the ensemble average -- this is the zeroth iteration

ensemble average f_0; (vii) obtain cross correlation R,_lno of each realization with

the ensemble average; (viii) shift the center of each realization by the location in

(x,y) for peak correlation; (ix) reject realizations requiring excessive shifts; (x)

obtain ensemble average of the realizations by aligning them with respect to the

new centers--this is the first iteration ensemble average; (xi) reject realizations that

produce excessively low correlation peaks; (xii) continue the iteration until all shifts

required for alignment fall below a size and all correlation peaks are above a set

level; (xiii) identify the locations of revised centers of finally accepted realizations

in the unsmoothed data records and obtain ensemble average after aligning with

respect to these centers--this final ensemble average is the coherent structure; (xiv)

the departure of each unsmoothed realization from the ensemble average denotes
incoherent turbulence.

In the eduction, we set tot1 in terms of the local maximum of mean to-,(y). In case

of the channel flow, the structures educed were those centered at y+= 125, 50, 30,
and 15.

The educed velocity vector patterns in the (z, y)-plane for the four locations are

shown in Figs. l(a-d). All the four contours show some similarities, characterized by

saddles and centers. We had anticipated the structure at y+ = 125 (note y+=180 at

the centerline of the channel) to resemble to some extent the mixing layer structure
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studied extensively before (see Hussain & Zaman, 1985; Metcalfe et al., 1985), but

the near wall structures appear to be different presumably due to the effects of the

wall and high shear. For this reason we present detailed data for structures centered

at both y+ = 125 and y+ = 15. The results for y+ = 15 are presented in Figs. 2(a-

m) as contours of coherent vorticity < wz >; coherent longitudinal and transverse

velocities < u > and < v >; coherent pressure < p >; incoherent turbulent kinetic

energy < q2 >; incoherent Reynolds stress -< u,.v,. >; incoherent pressure < p_ >;

coherent strain rate < S >=< .Ou/Oy > + < Ov/Oz >; coherent shear production
2

< Ps >= - < u,.v,. >< S >; coherent normal production < PN >= -- < u_ > 0 <
2

u > /0_- < v, > 0 < v > /0y; total production < Pr >=< Ps > + < PN >;

coherent pressure works < p >< $11 >, < p >< $22 >. Note that the y-scale

is expanded relative to the x-scale in order to reveal the details of the flow field

and that two vorticity contours are duplicated in all figures to provide a common

reference. The corresponding contours for y+ = 125 in the channel flow are shown

in Figs. 3(a-m).

We have started educing structures at four transverse locations in the Spalart's

boundary layer as well as one location each in the homogeneous shear flows. For

the purposes of this preliminary report, we limit our discussions primarily to the

case of channel structures centered at y+ = 15.

In the frame of the advected coherent structure, the flow above it moves down-

stream and the flow below it moves upstream. The structure advection velocity

being about 600-/0 of the centerline velocity, the downstream stagnation point is

closer to it than the upstream one. One would thus expect the normal production

at the front to be higher than at, the back, as is indeed tile case (Fig. 3j). Note

that nearer to the center of the channel, the shear is weak and more nearly uniform

across the structure. That is why the two saddles are nearly equidistant from the

center, and the normal productions are equal on both the front and the back.

The coherent pressure contour extends in the transverse direction considerably

beyond the structure boundary as denoted by coherent vorticity. This is to be

expected from the fact that pressure is an integral property, being the solution of a

Poisson equation with the source term due to gradients of the velocity field. Note

that the nfinimum of coherent pressure is at around the structure center, but does

not exactly coincide with it.

One striking feature is the fact that longitudinal pressure work is mostly negative

(hence of the right sign) at y+ = 125 but mostly positive at y+ = 15 (hence of

the wrong sign). That is, the pressure work transfers kinetic energy away from

the longitudinal component in the outer layer as is commonly presumed on the

basis of time average kinetic energy balance (see Tennekes & Lumley, 1972), and it

transfers kinetic energy into the longitudinal component (contrary to expectation)

near the wall. This is consistent with the result of Moin & Kim (1982), in which

they attributed it to the "splatting"motions of large eddies in the near-wall region.

Since the shear layer below the advecting structure (near the wall) has a higher

velocity gradient than the one above the structure (toward the centerline), one

would expect the shear production < Ps > to be higher on the left- than on the
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right-hand side of the structure. Data show the two regions to have comparable

levels of < Ps >, suggesting that the incoherent Reynolds stress < urv_ > is higher

at the top right-hand side of the structure. Note that both < PN > and < Ps > are

coordinate dependent and it is their sum which is invariant under rotation (Hussain,

1983). The total production < PT' > is higher at the top on the right- hand side.

Concluding remarks

........................... _*_x,x_ ill _xLracLing coilerent structure details in

the fully turbulent channel flow is demonstrated. In the plane of z-symmetry the

coherent structure characteristics are quite similar to those in the free mixing layer--

more so in the outer regions than near the wall. The topology consists of saddles

and centers, the saddle region being the location of maximum incoherent Reynolds

stress -< u,.v_ >, and maximum shear production. One interesting difference from

the mixing layer case is that the center in the wall-bounded case is not necessarily

characterized by a high level of incoherent turbulence intensity.

While we need to devote more time to compare our channel data with those in

jets, wakes and shear layers, some of the measures have not been obtained yet in

the free shear flows: for example, contours of dissipation, pressure work, etc. These

measurements and simulations are planned in the future. One noticeable difference

between the educed structures at V+ = 125 and V + = 15 is that the structure in the

former case is more rounded while in the latter case it is much more sheared. In

order to determine the role of shear while eliminating any effect of the wall, it would

be worthwhile to educe these structures in homogeneous shear flows with different

shear rates. This work is in progress now.

While we do not expect any noticeable difference in the near-wall coherent struc-

ture characteristics between channel flow and fiat plate boundary layer, the outer

layer structures can be quite different in the two flows on two accounts. In the

boundary layer, the outer structures should all be of the same sign and be bounded

by irrotational (nonturbulent) fluid which they entrain. In the case of the channel,

the outer region should consist of structures originating from both walls and can

be significantly different as a result of interaction of these structures of oppositely-

signed circulations.

When all these data are completed, we will be able to identify the similarities

and differences among structure topologies in the channel flow, the boundary layer

and homogeneous shear flow. We then hope to be able to comment specifically on

the role of the nonturbulent freestream, on the role of shear, and on the role of the

wall.

Future eztensions

We propose to extend this work to include the following:

(1) Starting from the plane of symmetry, march ahead on either side to track the
coherent vortical structure and educe structure details in local planes and then

reconstruct the three-dimensional structure.

(2) Educe structures with circulation opposite to the direction of mean shear. This

is important in the outer region of the channel where structures migrate from
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the opposite wall.

(3) Complete eduction on the basis of total vorticity I¢01 rather than the spanwise

vorticity w_.

(4) Address clearly the mechanisms of entrainment, mixing, production, intercom-

ponent transport, enstrophy cascade and dissipation associated with the educed

three-dimensional coherent structure.

(5) Educe other significant coherent structures and evaluate the dynamical role and

significance of coherent structures in the three flows studied.

(6) Study the evolution of a turbulent hairpin vortex in a laminar boundary layer

and a laminar channel flow with a velocity profile matching that of a turbulent

flow. Study the same in a flow with laminar and turbulent homogeneous shear.

(7) Study the dynamics and evolution of an an artificially induced bursting coherent

structure in fully turbulent channel flow and flat plate boundary layer.

B. Propagation velocities

The direct simulation data provide an excellent opportunity for determination of

propagation velocities of pressure, velocity and vorticity perturbations in turbulent

shear flows. In the case of the turbulent boundary layer or channel flow, in partic-

ular, varying values of propagation velocities have been reported in the literature.

In addition to being of fundamental interest, the propagation velocity is of direct

concern in understanding coherent structure topology and dynamics.

If instantaneous fields of simulation data are considered at two instants t] and t2
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and they are cross-correlated, then from the locations (_zm, @m) of cross- correla-

tion peak, one can obtain streamwise and transverse propagation velocities Uc, Vc

as follows:
_Zm

Uc-
(t2 -- t,)

Vc--
(t2--t,)

As a first step, we have determined values of U< from streamwise correlations of

velocity (ui), pressure (p), and vorticity (_i) fields. Fig. 4a shows the profiles of

U_ for ui and p as functions of y, and Fig. 5a shows the profiles of U_ for vorticity

(_i). Figs. 4b and 5b show the same profiles as functions of y+.

It is surprising how closely the convection velocities for velocity and vorticity

perturbations agree with each other. Moreover, these profiles closely agree with

the mean velocity profile, being only slightly lower than mean velocity in the outer

region, but being higher than the mean velocity near the wall. There are clear

differences between the data presented here and those reported in literature. The

convection velocity of pressure in the wall region is consistently higher than those of

velocity and vorticity, indicating somewhat the elliptic nature of the pressure field.

Future eztensions

(1) To determine Vc in addition to Uc. When correlation in (z and y) is used,

the current value of U_ may be somewhat different from that found from the

z-correlation alone.
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(2) Determine Uc and Vc for positive and negative wz separately.

(3) Determine U_ and V_ values for all variables in the two homogeneous shear flows.

C. Taylor hypothesis

The Taylor hypothesis of frozen turbulence is a common assumption in experi-

mental turbulence for inferring spatial structure of turbulence from temporal data

obtained by a stationary probe. It is also commonly invoked for inferring wave

number spectrum from measured frequency spectrum as well as in measurements of

dissipation and higher-order moments. While there have been extensive discussions

of the limitation of the hypothesis, which were obviously known to Taylor himself,

no direct test of this hypothesis has been possible yet. The direct numerical sim-

ulation databases allow us to make a thorough evaluation of this hypothesis for
different flow variables as a function of shear rate.

The hypothesis assumes that

= +UT )¢=0

where UT is the Taylor advection velocity and ¢ can be any of the variables

{ui,p, wi,c}. The value of UT used in the literature has varied (Zaman & Hus-
sain, 1981):

UT:U(y),

= u(x, y, z),

=

= ui( , y, z),

mean velocity

local velocity

propagation velocity

filtered velocity

We have used the first, second and fourth in the 1987 CTR session. It is seen that

both mean and rms values of DTdp are small in the outer layer, except very close to

the wall. Comparing instantaneous contours of DT¢ with the smoothed contours of

ui, wi, p, it is found that the departure from the hypothesis is not directly associated

with large-scale structures.

Future eztensions

(1) Compute vorticity fields using Taylor hypothesis and velocity fields, and com-

pare with true vorticity fields.

(2) Determine which choice of UT produces the minimum error in the use of the

Taylor hypothesis.

(3) For situations when there are large values of DT¢, evaluate the various terms

in the convective balance equations of ¢. Determine which term (and hence

which mechanism) produces the maximum contribution to the departure from
DT¢ = O.
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Inflectional Instabilities in the Wall

Region of Bounded Turbulent Shear Flows

By JERRY D. SWEARINGEN, z RON F.

BLACKWELDER, 1 and PHILIPPE R. SPALART 2

Objective

The primary thrust of this research was to identify one or more mechanisms re-

sponsible for strong turbulence production events in the wall region of bounded

turbulent shear flows. Based upon previous work in a transitional boundary layer

(Swearingen & Blackwelder 1987), it seemed highly probable that the production

events were preceded by an inflectional velocity profile which formed on the interface

between the low-speed streak and the surrounding fluid. In bounded transitional

flows (Swearingen & Blackwelder 1987, Finlay, Keller & Ferziger 1987), this unsta-

ble profile developed velocity fluctuations in the streamwise direction and in the

direction perpendicular to the sheared surface. The rapid growth of these instabil-

ities leads to a breakdown and production of turbulence. Since bounded turbulent

flows have many of the same characteristics, i.e., strong shear, low-speed regions,

oscillatory motions, etc., they may also experience a similar type of breakdown and

turbulence production mechanism.

Methodology

From the turbulent-boundary-layer direct numerical simulation of Spalart (1988),

the instantaneous velocity, pressure, and vorticity fields were readily available. The

first effort was devoted to examining these fields visually through the wonders of

the IRIS workstation. The spanwise shear, Ou/Oz, was examined as well as the

related normal vorticity, w_. The inflectional profile associated with the shear layer

with this orientation may be unstable in the Kelvin-Helmholtz sense and produce

u and w fluctuations. Hence, the role of the spanwise velocity fluctuations was

deemed to be important. Secondly, these fluctuations were studied to see whether

the average structure associated with w indicated turbulence production. A detec-

tion method based on w using a VISA and quadrant technique was obtained by

modifying existing software programs within the CTR. Thus, the shear i)u/Oz, etc.,

could be conditionally averaged to educe the relevant parameters leading up to and

associated with the turbulence- production events.

1 U.S.C.

2 NASA Ames Research Center
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FIGURE 1. Contours in an z - z plane, a) Streamwise velocity fluctuations u';

b) normal vorticity w'_

Results

All of the results reported here were obtained from the boundary-layer-simulation

data of Spalart (1988) for Ro = 670. The visual observations of the instantaneous

velocity field near the wall revealed that the low-speed streaks were surrounded

by regions of strong shear. On both sides of the streak (see Fig. 1), IOu+/Oz+ l

was typically between 0.2 and 0.5 with opposite signs on the two sides. Above the

streaks, Ou+/Oz + was also large and had similar values. Three-dimensional plots

of the modulus

Oy+ + Oz-----_

showed that in the region 15 < y+ < 80 it had its largest magnitude and was

typically beside and above the low-speed streak.

In many instances, the low-speed region undulated, i.e., moved in the spanwise

direction with a wavy motion. This movement was similar to those observed by

Swearingen & Blackwelder (1987) and Finlay et al. (1987), and had a streamwise

wavelength of 100 - 200 t_//u_. As a time sequence of the low-speed region was

followed, the undulating motion was seen to grow in amplitude and finally break

up into chaotic motion.

Closer study of this motion revealed that the undulation was associated with

strong w fluctuations. Data at y+ = 15 were used to examine this aspect of the
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low-speed streaks. A quadrant technique program was developed to plot the intense

regions in quadrants 2 and 3 of the uw plane; i.e., those regions whose magnitude

exceeded 4 u_ were plotted. The instantaneous field had three important charac-

teristics: first, those spatial regions where quadrant-2 events were occurring had

a preferred direction that made an angle with the streamwise direction of 10 to

15 ° in the z - z plane. Similar quadrant-3 events were aligned at -10 to -15 °

forming a cone opening downstream and extending over a streamwise extent of 600

to 1200 v/u,-. Secondly, the exact locations of the quadrant-2 and -3 events were

often aligned with the locations where the low-speed streaks were turning in their

undulatory motion; i.e., at the corners where the low:speed streak changes its direc-

tion. Thirdly, by plotting the quadrant-2 and -4 uv events (i.e., the high-production

events in the Reynolds average sense) from the same data, the uw events were ob-

served to occupy a much larger spatial extent than the corresponding uv events;

i.e., the uw events had longer scales.

It was also observed that the corners of the undulating streaks were often in the

process of being lifted away from the wall. A similar quadrant technique was used

to examine the simultaneous v and w motions; namely, quadrants 1 and 4 in the

vw plane. This motion, which had large amplitudes in these quadrants with v > 0,

were compared with the streaks of the same data. The vw events were much less

frequent than either the uw or the vw events. When they occurred, however, they

generally denoted regions of the streaks near the corners that had been lifted. As

these events were followed visually downstream, they broke up into chaotic motion.

Auxiliary results

If the turbulence production is associated with inflectional velocity profiles, then

any disturbance at the inflection point should begin growing where an inflection

occurs. The rate of growth is directly proportional to the shear at the inflection

point, as described by Drazin & Reid (1984). Thus U(z) data in the y+ = 15 plane

were searched for points of inflection, and the value of the gradient Ou/Oz was

recorded. Similar results were obtained for the values of Ou/Ov at the inflection

points in the z-V plane in the range 10 < y+ < 20. These data were used to

construct the conditional probabilities of the shear at the inflection points shown in

Fig. 2. The conditional probability of Ou/Oz is close to being symmetrical about

the origin, consistent with spanwise symmetry, and has peaks at 4-0.16 u2/v.

The joint probability distributions of uw, uv, and vw were recorded to ascertain

whether the embedded undulating motion described earlier could be detected in

the standard statistics. The uw distributions were symmetrical about the w = 0

axis, as expected, but were asymmetrical about the u = 0 axis. Similar results were

obtained for the vw joint distribution.

A preliminary attempt was made to determine where the largest changes in the
flow structure occurred as the flow was convected downstream. The convection ve-

locity, Uc, was obtained by comparing two data planes at the same y+ value but

displaced in time by At + = 9. The second plane was shifted in the z direction by a

distance of UcAt to form the function f(z + UcAt, to + At) and the difference/_(z)
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with the first plane f(z, to) obtained. The minimization of the mean square of the

differences, g, was used to determine the convection velocity Uc. The convection

velocity in the logarithmic and outer region of the flow followed the mean velocity

within the accuracy of the calculation. However, for all values of y+ < 10, the con-

vection velocity was constant at Uc _ 10 u_ for all flow variables; i.e., the velocities,

vorticities, and pressure. This result could be very important for understanding the

physics and for modeling and should be pursued further.

Summary

The results support the idea that an inflectional instability may be associated with

and responsible for the disintegration of the low-speed streaks in the wall region.

There was often a strong shear and an inflectional velocity profile surrounding the

low-speed region. The time sequences indicated that this condition persisted up

to 60 u/u2_, indicating sufficient time for an instability to develop. The low-speed

streaks developed an oscillatory motion which increased as time progressed, also

indicative of an instability. The v and u, velocity components became large during

this motion, in accordance with an instability mechanism. In the last available time

frame of the data observed in detail, the undulating portion of the streaks appeared

to be breaking up into chaotic motion.

Future work

The work has been based primarily upon a study of the instantaneous data. In

the future, one hopes to be able to apply conditional sampling to the data. The 1 st

and 4 th quadrants of vw seemed to be the best detection function to pursue.

The fact that the convection velocity in the wall region was found to be constant

at about 10 uT has important implications for the wall structure, as well as modeling.

It is hoped that this work can also be continued in conjunction with J. Kim.
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Active layer model for wall-bounded turbulence

,By M. T. LandahP J. Kim 2 and P. R. SpalarC

The active-layer model for wall-bounded turbulence hypothesizes that the non-

linear terms are large only in a thin layer near the wall, and hence the turbulence

in the region outside the active inner layer can be modeled as a linear fluctuating

flow driven by the active layer. This hypothesis is tested using data obtained from

a direct simulation of turbulent channel flow. It is found that the nonlinear effects

are the strongest near the wall with a maximum at around y+ = 20 and, outside

the near- wall region, these involve primarily the cascading mechanism leading to

dissipation.

1. Introduction

Laboratory experiments and numerical simulation have shown that the turbulent

activity in wall-bounded turbulence is the highest in the immediate neighborhood

of the wall, in the viscous and buffer layers. Therefore, nonlinear effects may be

expected to be strongest in this region. A possible model for the turbulent field

might therefore be to consider the turbulence in the region outside an active inner

layer as a linear fluctuating flow driven by the active layer (Fig. 1).

2. Analysis

We subdivide the flow field in a parallel mean flow, U(y)_il, and a fluctuating

field, u,v,w,p. By elimination of the pressure from the momentum equations,

making use of the continuity equations in the process, the following equation for

the v-component is found (Landahl, 1967):

Los(v)=q (1)

where Los is the (space-time) Orr-Sommerfeld operator,

Los(v) = (O/Ot + UO/Ox)V2v - U"Ov/Ox - vV4v (2)

and q contains all the nonlinear terms,

q = W2T2 - 02Ti/OxiOx2 (3)

where

Ti = 0 i¢/0zj (4)

1 Massachussets Institute of Technology

2 NASA Ames Research Center
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FIGURE 1. A model of wall-bounded turbulence consist of active non-linear inner

layer and a linear fluctuating outer layer driven by the active layer.

with

rij = -uiuj (5)

The solution of (1) assuming q to be given may be determined by applying Fourier

transformation in z, z and t, which yields

(U- c)(_"-k_b)-U"f_-(1/ik=)(d2/dY 2 -k2)ZG=fT/ik= (6)

where the caret denotes a Fourier-transformed quantity, k= and k_, denote the z-

and z-components of the wave number k, respectively, and c = w/k=.

3. Calculation of the Reynolds stress

The basic hypotheses in the active-layer model are that the nonlinear terms are

large only in a thin region near the wall and that the flow in the region outside

this layer may be found by considering q as a given and driving an outer linear

fluctuating flow field. From the statistics of q one may then determine any desired

statistical quantity such as the mean Reynolds shear stress,

r = -p < uv > (7)

By applying Fourier transform to the component equations and using Parseval's

formula relating quadratic mean quantities to their transforms, one finds, upon

neglecting viscous terms, that the wave number spectrum, S_, for the Reynolds

shear stress, is related to the spectrum for the v-fluctuations through

s" = (k,/k) + (k=/k)= U"S , (8)

where S_ denotes the spectrum of v in a reference frame convected with the mean

velocity U(y), and the prime denotes differentiation with respect to y. From (6), it
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follows that for small viscosity the v- fluctuations may receive their largest contri-

butions from the region near k_ -- O, in which case the second term in (8) will be

negligible, and with k = kz one finds after integration that

Sr= U'S_, (9)

a result that may be shown to be consistent with Prandtl's mixing-length hypothesis.

4. Application to channel flow turbulence

The basic hypothesis on which the present model is based, namely, that the non-

linearities are important only in a thin region near the wall, may be tested with

the aid of the numerical turbulence simulations. A fairly extensive data base for

turbulent channel flow has been generated in the NASA-Ames numerical simula-

tions, although limited to fairly low Reynolds numbers. From the computed data,

the nonlinear terms of (1) may be extracted and appropriate statistical quantities

determined. Since the detailed temporal evolution is not so easily accessible because

of the way the data are stored, for a preliminary assessment of the soundness of

the basic hypothesis of the present model, the spatial mean and power spectrum

of a single time realization was determined from the computed velocity field. The

results are shown in Figs. 2 and 3. In Fig. 2, the root-mean- square value of q is

presented (arbitrary scale). It has a maxinmm at around y/h = 0.1 (h = channel

half width), which corresponds to y+ = 18, and drops off to a value of about one

tenth of the maximum towards the center of the channel. The spectra shown in

Fig. 3 for different distances from the wall are found to be fairly flat in the wall

and buffer regions, with the cutoff in ks at a higher value than for k_, reflecting

the dominance of high streamwise elongation of the dominating structures. The

spectrum at y+ = 76 (Figs. 3g and 3h), however, which is well outside the buffer

layer, has its main contribution from the high wave-number range (both in k_ and

k_ ). This probably reflects the nonlinear cascading mechanism involved in dissipa-

tion. The production of Reynolds stress resulting from this spectrum is not large,

however, since it receives its main contributions from the low k_-end. The part of

the q-spectrum responsible for the production can therefore be expected to be even

more concentrated in the near-wall region.

5. Conclusion

The model proposed for wall-bounded turbulence, namely, that the nonlinear

driving of the turbulent fluctuations is concentrated in the near-wall region, in

the viscous and buffer regions, has been tentatively examined using data from the

NASA-Ames channel-flow simulations. The preliminary findings are that the non-

linear effects are the strongest near the wall, with a maximum at around y+ = 20,

and that outside the near-wall region they involve primarily the cascading mecha-

nism leading to dissipation. The mean and the spectra were obtained from a single

time realization; for a more general treatment, one would need to work with en-

semble averages over a large number of realizations, as well as to employ spectra in
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Profiles of the root-mean-square values of q in Eqn. (1).

a frame of reference convected with the local mean velocity. If found to be sound,

this model will lead to a reasonably simple procedure for determining the Reynolds

stresses and other statistical quantities through a comparatively simple linear calcu-

lation making use of a universal model for the nonlinear processes in the near-wall

region, the statistics of which may be found from numerical simulations carried out

at modest Reynolds numbers.
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Wave-growth associated with
turbulent spot in plane Poiseuille flow

By D. S. Henningson 1, M. T. Landahl 2 and J. Kim 3

A kinematic wave theory is used to investigate the cause of the rapid growth of

waves observed at the wingtip of turbulent spot in plane Poiseuille flow. It is found

that the qualitative behavior of the wave motions is well described by Landahl's

breakdown criterion as the wave selection procedure. The predicted wave number,

wave angle, and phase velocity are in agreement with those values obtained in a
direct simulation.

1. Introduction

A localized disturbance in plane Poiseuille flow can develop into a turbulent spot

if the Reynolds number ( Re = Ucnh/v , where UVL is the center line velocity

and h is the half-channel height) is above about 1000. Experiments (Carlson et

al. 1982; Alavyoon et al. 1986; Henningson & Alfredsson 1987) have shown that

oblique waves develop around the spot as it propagates downstream. Henningson

& Alfredsson (1987) observed the waves on the wingtips, i.e. the sides of the spot,

consisted of the least stable Tollmien-Schlichting (T-S) mode. A recent numerical

simulation of a Poiseuille flow spot (Henningson et al. 1987) shows that the wingtip

wave-packet extends into the spot where the waves attain very high amplitude

before they break down into turbulence. This indicates that the waves do play an

important role in the rapid spanwise growth of the spot. In boundary layer spots

(Chambers & Chambers 1983), however, waves are not seen to play such a role.

This poses the following questions. Is the spreading of the two spots caused by

different mechanisms? Are the waves just a passive response to disturbances in the

surrounding laminar flow induced by the turbulence fluctuations? As a first step

toward resolving these questions the present work addresses the cause of the rapid

growth of the waves observed in Poiseuille spots. The related question of wave
selection mechanism will also be considered.

2. Analysis

The wave pattern to be analyzed is shown in Fig. 1. Detailed descriptions of

the computations can be found in Henningson et al. (1987). In what follows,

all dimensional quantities are non-dimensionalized by the centerline velocity, UCL,

1 Aeronautical Research Institute of Sweden (FFA)

2 Massachussets Institute of Technology

3 NASA Ames Research Center
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and the channel half-width, h, and z, y, and z denote the streamwise, vertical and

spanwise directions, respectively. Fig. la shows a top view of + 0.01 contours of the

vertical velocity at the channel centerline. The front part of the spot has travelled

a distance of about 200 from its generation point at this time, t = 258. Fig. lb

shows the modal shape of the waves for the first few amplitude maxima and Fig.

lc shows the corresponding spanwise amplitude variation at the centerline. The

waves are seen to grow almost an order of magnitude as they propagate into the
___1-:1_ a.t_." .... 1_1 _'L .... _L'11 " _ ..... a._'_11-- J. 11-__. _f Jl • 1 , 1. •

i.e. the T-S wave. The calculations by I-lenningson et al. (1987) have shown that

the phase speed in the streamwise direction of the waves are approximately 0.6, the

absolute value of the wave number vector (k = V/a 2 +/32 ) about 1.8, and the angle

(¢) between the wave number vector and the streamwise direction about -65 °. The

velocity of the spot interface at the wingtip is approximately 0.7 in the streamwise

direction and 0.12 in the spanwise direction. (The interface here is taken to be

where the vertical velocity exceeds 0.02.)

A plausible explanation of the wave growth seen at the wingtip is interaction

between the changing mean profile and the waves. If the time and spatial scales

of the mean motion and the waves are widely separated, kinematic wave theory

(Witham 1974) is appropriate to analyze their interaction. The starting point of

the theory is a wave packet of the form,

ae i0 0 = olz +/3z -- wt

where a, a,/3 and w are assumed to be slowly varying functions of space and time.

The waves are assumed to have a known dispersion relation

=

which relates the variation of the angular frequency to the wavenumber vector

components. Using the definition of the phase, 0, and the dispersion relation, it can

be shown (Witham 1974),

1

A

da OW

dt Oz

a/3 ow
dt Oz

do., OW

dt Ot

dA 00W

dt

00W

Oa Oz 0/3

along the rays defined by
dz OW

dt Oa

dz OW

dt 013
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FIGURE 1. (a) A top view of + 0.01 contours of the vertical velocity at the channel

centerline: t=258, Re=lS00. (b) Profiles of the vertical velocity for the first few

amplitude maxima: --, x=186, z=-29.8; .... , z=186, z=-28.2; ........ , z=186,

z=-26.7; -----, z=186, z=-25.5. (c) Spanwise variations of the vertical velocity at

x=186 and y=0.

where A is the wave action density, which is proportional to the square of the

wave amplitude. The wave properties are seen to vary along the rays given by the

group velocity, _'9 = (aW/Oct, OW/O_). Landahl (1972) applied the above theory

to oblique T-S waves riding on an inhomogeniety consisting of a larger scale locally

two-dimensional wave. He was able to integrate the equation for the wave action

density along a ray to yield
A 1

Ao Cgn -- C 0

where cgn is the group velocity of the small scale oblique waves normal to the larger
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two-dimensional wave, and Co is the phase velocity of the two-dimensional wave.

Notice when cg_ approaches co the wave amplitude will increase dramatically. This

is a result of wave energy focusing. When the oblique waves approach the larger

wave, their energy piles up on top of the large one since energy is constantly supplied

by the incoming waves but no energy can leave, this results in an increase in the

amplitude of the oblique waves.

As a first try we shall assume that the edge of the spot, where the waves are
fOllnC]_ ix lnr'_ twn-d _,'nA '_ ...... ÷ko 1"_A_1-.,1'_ L.^^1._1 ....... : ---'--

i

(Landahl 1972): i.e., we will examine if the group velocity of the wingtip waves, for

any combination of wave numbers and frequency, is equal to the edge velocity at

the wingtip. If the breakdown criterion is satisfied for a specific combination of a,

fl and 0;, then the wave will experience a rapid growth as it approaches the spot

edge. Thus, this provides both a mechanism for growth and selection of the waves.

The dispersion relation for the T-S waves are found by solving an extended form

of the Orr-Sommerfeld equation (see Henningson et al 1087). The appropriate mean

velocity is

U(y) + W(y)tan(¢)

where U and W are the mean streamwise and spanwise velocity components, respec-

tively. U and W are found by horizontal averaging and the required combination is

fitted to a modified parabola

(1 -- y2)(Co -4- c2y 2 -Jr- c4y 4)

where Co, c2 and c4 are fitting constants. Profiles are fitted to the velcities seen in

Fig. 2 using the appropriate wave angle (only ¢ = 65" is shown in the figure). They

are obtained from the position indicated at the wingtip in Fig. la; the line in Fig.

la indicates the tangent of the spot edge at this position and the arrow is in the

direction of motion. Note that as the wave angle becomes large the departure of

the fitted velocity profiles from the parabolic one become greater. This results from

the inflectional character of the spanwise mean velocity, which have larger weight

for higher wave angles.

When the Orr-Sommerfeld equation is solved, the dispersion relation found is

usually complex. This requires a modification of the kinematic wave theory. Lan-

dam (1972) used a simple approach, which involves adding a growth/decay rate

term in the equation for the wave action density and the use of the real part of

the dispersion relation when the group velocity is calculated. This requires small

growth/decay rates and that the development of the wave packet is considered for

short times only. Assuming this to be true the breakdown criterion is still valid

(Landahl 1982). In the following we will thus use the real part of the dispersion

relation in our effort to look for waves that satisfy the breakdown criterion.

3. Results and Discussion

Results from the solution of the Orr-Sommerfeld equation for the position indi-

cated at the wingtip in Fig. la can be seen in Figs. 3-5. Contours of the group
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Mean velocity profiles at z=186, z=-30 and _b = -65 °.

velocity perpendicular to the spot edge (i.e. in the direction of the arrow in Fig. la)
are plotted as a function of k and _bin Fig. 3. Figs. 4 and 5 show contours of the

phase velocity in the streamwise direction and the imaginary part of the dispersion

relation. Note that the group velocity attains its maximum of 0.25 for k = 1.0 and

_b = 45 ° (Fig. 3). The edge velocity at this location from the simulation was 0.23.

The breakdown criterion is thus seen to be approximately fulfilled for k = 1.0 and

_b = 45 °. This particular wave should grow to large amplitude at the wingtip of the

spot. The waves actually observed has both higher wave number, wave angle and

phase velocity. However, the waves are damped at this position (see Fig. 5) and

only experience exponential growth for higher wave angles. Thus we might expect

to find a wave that approximately fulfills the breakdown criterion and at the same

time is gowing exponentially. To find such a wave we follow the ridge going from

the peak value in Fig. 3 up towards higher wave numbers. At around k=1.7 and

_b = -65 °, the waves start to grow. This is close to the observed wave parameters.

It should be noted here that this is an approximate analysis and that exact agree-

ment cannot be expected. However, it is encouraging to see that the the qualitative

behavior of the normal group velocity, with its ridge going through the observed

values, is able to select a wave using the breakdown criterion together with the

requirement of exponential growth, and thus explain the observed wave motions.

It should be an worthwhile effort in a future study to attack the full problem by

tracing the wave rays into the spot and calculating the amplitude along them.
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FIGURE 3. Contours of the group velocity perpendicular to the spot edge (i.e. in

the direction of the arrow in Fig. la).

Finally, the picture that emerges from the present analysis is that the waves

outside the spot are first generated by the moving turbulent disturbance, as dis-

cussed by for example Li & Widnall (1987), then they experience a growth by the

wave energy focusing mechanism and the inflextional character of the effective mean

velocity profile.
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Appendix

During the summer program a special half day workshop on the role of coherent

structures in turbulence modeling was organized by Prof. A. K. M. F. Hussain. The

objective was to explore ideas in the use of the knowledge of organized structures

in turbulence modeling.

Several participants were asked to make presentations, and five of these prepared

written position papers that are included in this appendix. These statements appear

as submitted by the authors. While these contain some interesting observations,

the organizers of the Summer Program feel that no solution was put forward to

the problem of incorporating the coherent structure research in Reynolds stress

modeling. This reflects the great difficulty of achieving this integration. Perhaps

the views expressed here will be helpful towards this end.
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Coherent

By PETER

Structure

BRADSHAW x

Our mental picture of turbulence structure has progressed from the hypothesis that it mimics

molecular motion to the belief that turbulence is highly organized though there is some question

as to whether there has been an overshoot, i.e., an over-selling of coherent structures in general

on the strength of experiences in mixing layers. A brief look at the history is instructive.

• Boussinesq (1883) - "billiard ball" analogy with kinetic theory, leading to the eddy viscosity
concept.

• Prandtl (1925) -mixing length "lumps" (apparently inspired by the Ahlborn method of water-

surface flow visualization, which forces two-dimensional motion near the surface).
• Theodorsen (1952) - horseshoes of assorted sizes.

• Townsend (1956) - WEAK large eddies with shapes deduced from correlation tails.

• Grant (1958) - STRONG large eddies in boundary layer and wake.

• Bradshaw et al. (1964) - VERY STRONG (but 3D) large eddies in mixing layer.

• Crow &Champagne (1971) - VERY STRONG 2D (but Re-dependent?) orderly structure in
mixing layer.

• Brown & Roshko (1971) - confirmed Crow g_ Champagne picture, with the implication that the
2D vortex roll structure may not be very Re-dependent.

Between 1964 and 1971 Townsend's large eddies grew into orderly structures! Unless the latter

term is used to distinguish unusually strong, or unusually long- lived, or unusually two-dimensional

large eddies from the norm, it is perhaps a confusing change from Townsend's more descriptive
label, at least for discussion of the dominant eddies away from the inner layer of a wall flow.

Certainly, the main impression one gets from the last 15 years' research is that large eddies / orderly

structures are longer-lived than was previously thought - and of course that in the mixing layer

the orderly structures are essentially two-dimensional unlike the traditional picture of turbulence.

Now the time scale (turbulent kinetic energy)/(dissipation rate) or TKE/(production rate) is

always a representative of the energy-containing, shear-stress-carrying eddies. Thus an unusually
long eddy lifetime (as deduced from flow visualization, say) implies an unusually small rate of

energy transfer (small dissipation rate) in that part of the turbulence - that is, an unusually weak

coupling between the long-lived eddy and the rest. This suggests that a two- dimensional eddy may

be exceptionally long- lived, simply because it does not share so directly in the vortex- stretching
"cascadse" of energy as three- dimensional eddies do. The mixing-layer simulations of Metcalfe et

al. (1987) make it clear that a mixing layer with disturbed initial conditions can have a large-eddy

structure consisting of long but finite vortex rolls swept back at various angles, presumably strongly
interacting with each other and therefore having shorter lives than the parallel two- dimensional

rolls observed by Brown & Roshko and others. We need to make $1are we are chasing the right,
representative eddies! A related point is that our main object in studying any turbulent flow is

to improve predictions of shear stress, and we should therefore be studying the eddies that carry,
or influence, the shear stress. It seems a good general principle that presentations of educed eddy
shapes should be accompanied by an estimate of the fraction of total shear stress that is carried
by eddies of that shape.

According to Townsend's large eddy equilibrium hypothesis, turbulent mixing (i.e., shear stress)

was supposed to be controlled by large eddies (more or less filling the shear layer but not carrying
much of the turbulent energy). This is a paradox - how can eddies be weak in energy, strong in

shear stress? "Weakness" of the large eddies was required for the "equilibrium" hypothesis. The

result was an eddy viscosity for the smaller, energy-containing eddies. Grant (1958) showed that

large eddies in boundary layers and wakes did contain a large fraction of the turbulent energy.
This killed the equilibrium hypothesis - but the concept of large eddies as large contributors to
mixing should not have been largely ignored for the next 15 years.

The main questions about "orderly structures" or "large eddies" are:

(i) How different are they in different shear layers?

1 Imperial College, London
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(ii) Can we usefully combine a model of the orderly structure with a cruder representation of the
small-scale, less-well-ordered eddies as in Townsend's large- eddy equilibrium hypothesis or the

Murthy &Hong Large Eddy Interaction Model?
(iii) What about the all-important boundary layer? (Especially the outer layer - engineers think

they know all they want to about the inner layer.)
Suggested answers: -

(i) Large "orderly structure" is just an extreme case of Townsend's large eddies, which were always
envisaged as different in different flows. Therefore study of orderly structure is not a route to
a universal model (at least at Reynolds-averaged level). The oersistenc_ nr orderly __*.ruc_.'-'-rcit,
_:riticai to the success ot "'zonal average" modeling - if large eddies/orderly structure persist for
a long time after a change of zone, the change of empirical coefficients at the edge of a zone will
have to be governed by a complicated rate equation.

(ii) Except in the mixing layer and the inner layer of a wall flow, the background turbulence carries
a very significant part of h--6- but maybe we can manage with just a few modes (not necessarily
superposable Fourier modes).

(iii) In the outer part of a boundary layer, the large eddies/structures seem to be not-very-well-
ordered eruptions, probably horseshoe- or hairpin-like (beware low- Reynolds-number simula-
tions), because the outer structure depends on viscosity up to Ree = 5000 (as shown by wake
parameter behaviour - see also Murlis et al., 3. Fluid Mech. 122, 13, 1982). Since the outer
part of the flow presents the biggest challenge to turbulence modeling (provisionally accepting
the engineer's view of the inner layer!) study of the more spectacular forms of orderly structure
is unlikely to help us with the boundary layer problem. Of course, study of the inner layer is
helpful to basic understanding: at least the scaling in the logarithmic region is simpler than
usual even if the turbulence is not.

As a final comment, it is still difficult to see how conditionally-sampled data on orderly struc-
tures, whether from simulations or from experiments, can actually be used in Reynolds-averaged
models, although qualitative understanding is still valuable. However, if we could derive exact
transport equations based on some compromise between Reynolds averaging and solution of the
time-dependent Navier Stokes equations, we would have a considerably better chance of using our
knowledge of orderly structures.
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Coherent Structures-Comments on Mechanisms

By J. C. It. HUNT 1

1. Introductory remarks

There is now overwhelming evidence that in most turbulent flows, despite the flow field be-

ing random, there exist regions moving with the flow where the velocity and vorticity have a

characteristic "structure." These regions are called "coherent structures" because within them the

large-scale distributions of velocity and/or vorticity remain coherent even as these structures move
through the flow and interact with other structures. In most flows the sizes of these structures

vary but the distributions of velocity/vorticity remain similar. There is also evidence that there

is a significant degree of similarity between these distributions in different flows (Hussain 1986).

Since flow enters and leaves the bounding surfaces of these structures, a useful definition, fol-
lowing Hussain (1986), for coherent structures is that they are "open volumes with distinctive
large-scale vorticity distributions."

The following schematic remarks are a personal statement about possible fruitful directions for

the study of the dynamics of coherent structures (hereafter CS). Most CS research to-date has

been concentrated on the measurement and kinematical analysis of CS; there is now a welcome
move to examine the dynamics of CS, by a variety of different methods. A few of them will be
described here.

2. The origins of coherent structures

Coherent structures arise by two main types of mechanism.

(i) Instability (primary or secondary)

When non-uniform flows are generated at high Reynolds number they are usually unstable, so

that some small disturbances to the velocity field amplify. The most unstable disturbances may be

small in amplitude but their length scale is usually of the same order as that of the original mean
flow. Even as the amplitude of the disturbances grow to the same order as that of the velocity of

the original flow, the length scale and flow structure remain similar to that of the original small
disturbance, as in the free shear layer (Fig. 1).

Consequently linear stability theory remains of considerable value in analyzing CS and in esti-

mating their consequences, e.g., their effects on noise generation (e.g., Gaster et al. 1985).

Once the primary instabilities have grown secondary instabilities develop, often with vorticity
in directions perpendicular to that of the primary instability, for example the "braids" that form

in free shear layers with vorticity parallel to the mean flow and that link the primary "roller"

vorticities (e.g., Bernal & Roshko 1986).

A general feature of the growth of the primary and secondary instabilities is that they lead to

a concentration of vorticity in localized regions in the flow as shown by recent non-linear studies

(e.g., Smith 1987). Well-known examples are the rollers and braids in free shear layers, and the

spanwise vortices and "horseshoe" vortices in boundary-layer flows. These regions of concentrated

vorticity, which occur at Reynolds numbers (based on global or local scales) just great enough
for turbulence to persist, are usually found to have characteristics similar to those in coherent

structures at high Reynolds numbers.

(ii) Selective amplification of disturbances by the mean field

Consider an initially isotropic homogeneous turbulent velocity field introduced into a shear flow.

(This is certainly possible on the computer, e.g., Rogallo 1981, and approximately possible in a

wind tunnel, e.g., Champagne et al. 1970; it may broadly approximate the turbulence generated
at the wall or at the outer interface in the boundary layer, e.g., Townsend 1970.)

Computations, both non-linear by Rogallo (1981), and linear by Lee et al. (1987), show that the

shear stretches and rotates the vorticity in such a way that the eddies become elongated and develop

1 University of Cambridge
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SECONDARY
"CENTRI FUGAL"

INSTABILITIES

I PRIMARY ROLLSSHEAR INSTABILITY

"BRAID"
SUB-STRUCTURES

COHERENT STRUCTURES

FIGURE 1. Coherent structures generated from instabilities: Primary and secondary instabili-
ties in a free shear layer leading to two kinds of coherent structure -- "rolls" and "braids." The
latter are also known as "sub-structures."

sharper boundaries (Fig. 2). This is the explanation of the evolution of the velocity spectrum in
Rogallo's computations from an exponential decay (indicating very smooth velocity distributions
in the eddies) to a k-2 decay (indicating discontinuities on the large scale). Linear calculations
using Rapid Distortion Theory (RDT) also show these effects; similar coherent structures are found
as in the non-linear simulations. (The analysis of the RDT spectra needs to be done.)

3. Interactions between a coherent structure and its surrounding flow

After the formation of a CS, its subsequent existence depends on how it interacts with the
surrounding flow. This varies considerably between flows.

(i) u.ifo,.,. /tow,
Although CS are not generated in uniform flows, they are often moved by the flow or propa-

gate themselves into regions of approximately uniform velocity; CS in wakes far from the body
approximate to this case. The simplest type of CS to consider in this situation is the vortex ring
or the vortex pair (Maxworthy 1977). These CS preserve their structure, but they always lose
some vorticity as they propagate through the flow (Fig. 3a).
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FIGURE 2. Coherent structures generated by deforming a random velocity field. Distortion of

a typical eddy or CS as shear is applied to homogeneous turbulence. Note the change in spectra
(Rogallo, 1981; Lee et al., 1987)

(ii) Neighboring structure8

In free shear layers, wakes, and jets the CS are formed in thin layers so that the main effect of
the surrounding flow on the CS must be caused by adjacent or nearly adjacent CS. This is quite
different to boundary layers where each CS is surrounded by other CS (Fig. 3b).

One could characterize these interactions as 1 + 1 + 1 + .... These kinds of interactions can

be idealized by considering the interactions between pairs of vortices. Such studies have yielded
useful conservation conditions (Aref 1983), and insights into whether the vortices go round each
other or merge or pair (e.g., Kiya et al. 1986).

(iii) Many structures or a mean fieldf

In turbulent boundary layers each CS is surrounded by others, and also by small-scale incoherent
motion. In such cases it is no longer profitable to examine each interaction between the structures;
it is more practical to represent the whole velocity field as that of the CS, U, plus a mean velocity
field, _, induced by the vorticity within all the CS, and a random component, at I to represent on
the large scale the random locations of the CS, and on the small scale the incoherent motions (Fig.
3c). In other words, 1 + cc + _l, is equivalent to U + u + u I.

At present we understand little about the mechanics of the interaction between a finite volume

of fluid containing vorticity and the surrounding flow. Most research on the dynamics of turbulence
has been focused on the interaction between small perturbations and various kinds of mean flow,
e.g., Townsend (1976) or Landahl & Mollo-Christiansen (1988). This is perhaps surprising since
Prandtl's (1925) mixing length theory is based on a qualitative model of how "lumps of fluid" --
FKissigkeit ballen -- interact with a shear flow.
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(a)

l

(b)

PASSING O

_ PAIRING

TEARING

FIGURE 3. (a) A ring vortex in a uniform flow showing slow shedding of vorticity downstream.
(b) Interaction between a Coherent Structure (CS) and neighboring CS (1+1 ---).

Some general questions about this problem were set out by Hunt (1987):

i) What is the applied force and velocity of a volume V in a non-uniform unsteady flow with velocity

u? For inviscid flow (a good idealization for a short time), analytical expressions have recently
been obtained for spherical or cylindrical volumes moving in shearing or uniformly straining flows.
The initial movements of a lump-or CS- when displaced in a shear flow are largely controlled by
inertial forces, in particular the added mass and lift forces. One finds that transverse displacements
generate streamwise velocities of the lumps and thence Reynolds stresses-the CS analogy of the
small perturbation Reynolds stress found in RDT or second-order calculations (Fig. 3d).

(ii) How does the volume deform as it is accelerated when displaced across a shear flow? Flow
visualization of the eddies or CS in a turbulent boundary layer show that as they are ejected from
the wall form into "mushroom" shapes. These are very similar to the shapes of vortex sheets
surrounding volumes of fluid which are suddenly introduced into jets (Coelho g_ Hunt 1987).
In both cases the vortex sheets roll up into concentrated vortices characteristic of the mushroom
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/ VELOCITY OF THE CS

FIGURE 3. (c) Interaction between a CS and surrounding CS -- equivalent to the interaction

with a mean flow u and turbulence u e. (d) Movement of a volume of fluid across a shear flow
leading to the generation of Reynolds stress, -u_v _ -- an idealization of the mechanics of a CS in

a shear flow (Hunt 1987).
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structures. These vortices appear to have forms that persist-which of course is one of the necessary
features of CS.

The other approach to analyzing the dynamics of CS is to take a typical form of the vorticity
distribution in a CS and to compute its development in an appropriate shear flow. That has

certainly led to some interesting insights (Moin et al. 1986). But it will be necessary to conduct

many such computations to obtain general concepts from them.

4. Effects of coherent structures on the whole flow

Since coherent structures are regions of vorticity they induce a velocity field both within them

and outside them. Consequently, they affect the mean and the fluctuating components of the ve-

locity field. Because they contain the largest and most energetic scales of motion the CS contribute

a significant proportion of the total energy of the turbulence, and the Reynolds stress. The actual

proportion depends on the precise definition of the CS (cf. Adrian 1987).
To compute the velocity fields affected by the CS it is necessary to account for all the key

dynamical processes that affect the movement and the strength of the CS during its "life." Recent

experiments, and detailed analysis of CS found in direct simulations of turbulent shear flows, are

beginning to make this possible (Hussain et al. 1987).

Three examples of dynamical processes that need to be considered are: (i) amplification of the

small-scale vorticity of the surrounding flow at the stagnation and straining regions around the CS,

caused by the relative motion between the CS and the flow. This is similar to the amplification

around bluff bodies and cross jets in turbulent flows (Hussain 1986; Hunt 1973) (Fig. 4); (ii)
distortion of the vorticity and amplification of the "incoherent" turbulence within the CS, by the

internal straining motions and the shear layers on the boundary of the CS. These are particularly

important for determining the growth of the CS, i.e., controlling the spreading of the vorticity of

the CS. They also largely control (iii) the detrainment of vorticity into the "wake" of the CS. This

process has been studied in detail for the simplest type of CS, namely the vortex ring, and the

somewhat more complex jet in a cross flow (Maxworthy,1987; Coelho & Hunt 1987). For those

CS it was fond that at high enough Reynolds number the shed vorticity produces an unstable

velocity distribution similar to that of a bluff body. This is another mechanism whereby one

CS can produce another CS and small-scale turbulence in the surrounding flow. This essentially

depends on a diffusion process initially, whereas in the free shear layer the secondary structures

were produced by inviscid processes.

5. Concluding Remarks

These suggestions for topics of investigation into the dynamics of CS in fact follow many of

the lines of study that are being followed at the University of Houston by Prof. Hussain and

at the Center for Turbulence Research at Stanford/NASA Ames. There is perhaps one area of

significant difference in that at this stage it is not so clear to me how the detailed mechanics of

the CS will emerge from interpreting conditionally sampled velocity measurements in terms of
conditional joint probability density distributions. This approach may lead to the prediction of

certain useful statistics of the flow, but probably not to the dynamics of individual structures.

However, the actual conditionally sampled measurements of velocity will help in elucidating the

velocity/vorticity distributions in the CS, which is necessary for the dynamical studies outlined
here.

I am grateful to Fazle Hussain for organizing the seminar on coherent structures at the CTR

summer school, and for many interesting discussions on coherent structures, which this paper

reflects. I am also grateful to the organizers of the summer school, in particular Parviz Moin and

John Kim, who gave me some interesting other perspectives on coherent structures and how to

analyze them.
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FIGURE 4. Effect of a CS on the surrounding flow in high Reynolds number turbulence. (I)
Amplification of turbulence in the surrounding flow. (II) Shedding vorticity which leads to further
turbulence in the surroundings.
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Coherent Structures and Dynamical Systems

By JAVIER JIMENEZ I

Any flow of a viscous fluid has a finite number of degrees of freedom, and can therefore be seen
as a dynamical system. For a turbulent flow, an upper bound to this number was given by Landau
& Lifshitz (1959) and scales as Re 9/4, which is usually a rather large number. Lower bounds have
been computed for some particular turbulent flows, but also tend to be large. In this context,
we can think of a coherent structure as a lower dimensional manifold in whose neighborhood the
dynamical system spends a substantial fraction of its time. If such a manifold exists, and if its
dimensionality is substantially lower than that of the full flow, it is conceivable that the flow could
be described in terms of the reduced set of degrees of freedom, and that such a description would
be simpler than one in which the existence of structure had not been recognized.

As a trivial example, consider a particular two-dimensional flow for which we can prove that,
after some time, most of the vorticity concentrates in a few compact vortices. Such a flow could
be described by a few differential equations, and, presumably, easily integrated. Homogeneous,
two- dimensional decaying turbulence seems to follow roughly this model (Benzi et at. 1987).

Other examples of the same type are transitional Taylor- Couette flow and Rayleigh-Benard
convection. After the initial loss of stability, both systems develop attractors, different from the
initial equilibrium, and that can be described in terms of structures (rolls or cells). Although the
initial bifurcate states of those flows can hardly be called turbulent, the secondary bifurcations
that grow from them can be analyzed, at least for a while, as small perturbations of the initial
structures, usually described in terms of their positions and intensities. Technically, we speak of a
projection on a central manifold (Demay & Iooss 1984); physically we are talking about describing
a turbulent flow in terms of a few degrees of freedom. Another recent example of the same situation
is the appearance of disordered states in two-dimensional Poiseuille flow, starting from bifurcations
of nonlinear trains of Tollmien Schlichting waves (Jimenez 1987).

The common feature of all these flows is the existence of stable attractors, whose dimensionality
is much lower than that of the full flow, and towards which the flow tends after some time. Under
those conditions, the flow can be described, up to some level, by the properties of the attractor.
Most "attractors" found in nature, are, however, not stable, and cannot be really called attractors
at all. The system will approach them for a while, only to be repelled once it gets near the central
manifold.

The simplest example of this behavior is the linear differential equation ytt + sin_! = 0, which
represents a circular pendulum. If the system is given proper initial conditions it will approach
the position at which the pendulum is pointing "upwards," spend some time near it, and fall back
to make a quick revolution across the lower part of its trajectory. Even in this case, the system
expends most of its time in the neighborhood of its top (unstable) equilibrium point, and can
be described approximately as a being in equilibrium at that position, together with some model
for the fast motion in the lower part of its orbit. Perhaps the best example of this situation, in
a flow, is the plane temporal mixing layer. Here the "attractor" is a uniform row of compact
vortices, and the flow quickly tends towards it. But this solution is itself unstable (mainly through
pairing), and is eventually abandoned by the flow, only to converge to a different solution of the
same kind. Even so, a model of the flow as a uniform vortex row, with a suitable approximation
to the "sudden" pairing process, has been shown to give rough approximations to quantities such
as spreading rates (Jimenez 1980) and concentration distributions (Hernan & Jimenez 1982). A
more careful perturbation analysis on the lines outlined above has not been attempted, but might
be expected to give more accurate results.

Other turbulent flows have phase space structures which are presumably more complicated. The
next best plausible candidate for eduction of the complexity of a turbulent flow are the sublayer
ejections in wall-bounded turbulence. Recent observations (Jimenez et al. 1987) suggest that
the basic structure in that flow is a self-reproducing ejection, that could perhaps be described
as an unstable limit cycle. It is not clear, at present, how to treat a dynamical system in the

1 Universidad Politecnica Madrid and IBM Scientific Centre
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neighborhood of such a manifold, but any identification of a low dimensional structure which
describes a sizeable fraction of the time evolution of a flow, opens the possibility that a local

analysis in its neighborhood might give results that capture the qualitative and perhaps even

some of the quantitative features of the complete flow.

REFERENCES

BENZI, R._ PATARNELLO, S. _ SANTANGELO, P. 1987 On the statistical properties of

two-dimensional decaying turbulence. Europhysics Left.. 3, 811-818.

L)EMAY, -Y-. _5 IOOSS, G. 1984 Calcul des solutions bifurcuaees pour le probleme de Couette-

Taylor avec les deux cylindres en rotation. J. Maecanique theor, appl.. Num. Special,
193-216.

HERNAN, M. A. _ JIMENEZ, J. 1982 Computer analysis of a high speed film of the plane

turbulent mixing layer. J. Fluid Mech. 119, 323-345.

JIMENEZ, J. 1980 On the visual growth of a turbulent mixing layer,. J. Fluid Mech. 96, 447-

460.

JIMENEZ_ J. 1987 Bifurcations and bursting in two- dimensional Couette flow. Phys. Fluids.

30, 3644-3646.

JIMENEZ, J., MOIN, P., R. D. MOSER _ KEEFE, L. 1987 Ejection mechanisms in the

sublayer of a turbulent channel. These Proceedings.

LANDAU, L. D. _ LIFSHITZ, E. M. 1959 Fluid Mechanics. Pergamon Press, p. 123.



Center for Turbulence Research

Proceedings of the Summer Program 1987

N88-23120
325

Coherent structures and modeling:
some background comments

By S. J. Kline 1

When Fazle Hussain asked us to discuss how we can use the knowledge of coherent structures in

boundary layers in modeling, my first thought was, "I don't know the answer to that, and hence I
don't want to give a talk." My second thought was, "The lack of an answer to the question is the

most disappointing aspect of the work on coherent structures, which has interested me for a long
time." After losing a bit of sleep for three nights, I have to tell you I still don't know the answer to

the initial question. However, thinking about the question has led me to some ideas that seem to

be worth putting forward. First let me ask, "What are coherent structures in turbulent flows?" in
order that we have some mutual understanding of what I am talking about. My personal answer

to the question is: "Coherent structures are a sequence of events (identifiable motions) in the flow
which convert significant amounts of mechanical energies of the mean flow stream, into turbulent
fluctuations."

Since there are other possible definitions, let me call this coherent/p structures. These structures

have three identifiable parts in time: (a) creation of coherent/p structures (larger structures)

from smaller perturbations; (b) creation of smaller scale motions of many scales from the larger

motions; (c) decay of the smaller scaled motions owing to viscosity (Kolmogorov scale). Part (a)

is an "anti cascade-like" process; parts (b) and (c) are "cascade-like" processes. Thus cascade
theories can describe parts (b) and (c) but not part (a). Cascade-like theories so dominated ideas

in turbulence research for many years that when we submitted an article to a leading journal
around 1970 describing an anti cascade-like process, the reviewers made us delete the remark on

pain of refusing publication. So we seem to have learned at least something in the intervening
years in as much as few people in this summer institute would now deny the existence of the anti

cascade-like processes. It ought to have been evident all along that something, some energetic
process, has to create the larger structures in turbulent flows since otherwise all turbulent motions

would die out as the flow goes to downstream infinity, and we know that does not happen in
cases like the boundary layer and the mixing layer where a source of energy exists to downstream

infinity. In those situations, there are repeatable sequences of events, in a statistical sense, that
create quasi-coherent structures from the energy of the mean motion.

If we define an instability to be a qualitative shift in the flow pattern in the advected frame, then

type (a) processes appear to be "growth-like" local instabilities and type (b) processes appear to be

"breakup" (or breakdown) type local instabilities and are secondary or higher order instabilities.

The modifier "local" is used to indicate that the instabilities do not alter the whole flow field, as

for example a flow separation often does, but rather only affect energy transfer processes within

some localized part of the flow field.

It is important not only to recognize that the two types of instabilities are different, but also

that it is particularly difficult to study growth type instabilities, experimentally, analytically or in

the computer for a number of reasons. Such instabilities typically grow exponentially, and thus are

less apt to satis_aylor's hypotheses than other flow structures. They change very rapidly from
point to point in the flow, and being instabilities they amplify differences in initial conditions.

Thus they tend to have very large "jitter" from realization to realization. For both these reasons

they will be hard to identify and measure with fixed probes and will tend to have little if an

Rij correlation values at significant probe separations. Moreover, and this has not always been

fully appreciated, the ensemble averages of the coherent/p structures will only very rarely, if ever,

be seen in individual realizations. The situation with respect to ensemble averaging is precisely

analogous to that of the mean velocity profile. As the data of Kim, Kline and Reynolds showed

and the movie of Abernathy and other sources reconfirm, profiles of U(y, t) in the boundary all

deviate from the very well known mean profile U(y). Not only is the situation precisely analogous

for the coherent/p structures, but the implications are perhaps even more important since we are

concerned with using the coherent/p structures to tell us about the details of the dynamics and

1 Stanford University
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thus the ensemble averages if taken too literally may mislead us. Yann Guezennec's remarks about
ways to formulate the ensemble averages by folding structures with "strong left-handed" elements
onto those with "strong right-handed" elements are an excellent example of the dangers and what
needs to be done about them.

It is also in the nature of growth-like instabilities in hydrodynamics that they respond to a

range of perturbations of input parameters with a range of parametric variation in the outputs.
Indeed there is now clear evidence, when one begins to put it together, as S. K. Robinson of NASA
Ames and I are currently doing, to show quite clearly that there are several (more than four) quite
different kinds of perturbations that can set off the growth instabilities involved in the turbulence

production in a boundary layer and that at least three kinds of local instabilities occ,r. It is n,t
yet clear what fraction each of the three contributes to the totality of production of turbulent
kinetic energy in the wall layers.

All this suggests that the coherent/p structures are not just an elephant, but are more like a
zoo of various animals, each of which occurs with some variation in size and shape. It is easy to
deduce examples that demonstrate this fact, but Professor Hussaln's strictures on length of this
material preclude those details here. In sum the physics of turbulence production in the boundary
layer is of truly great complexity, unlike most physical situations in the world which are simple
once they are well mapped and understood.

I summarize this "dismal view" of the problem not only because it strongly affects the way
we need to conceptualize the physics, but more particularly because for this discussion it implies

several things of importance about the utility of structure information in mathematical modeling.
In discussing the use of structure information in modeling, it will be useful to distinguish three

"levels of help" that derive from structure information:

1. Qualitative knowledge that helps guide designs including ideas for flow
control: e.g., Riblets, LEBUS, wall curvature, mixing control in jets and cyclones, . ....

2. Suggestions about needed precautions in probe measurements, in LES/FTS, and in modeling.

3. Direct use of the features, the sequence of events that create turbulent kinetic energy as the
source for mathematical models.

The knowledge of the coherent/p structures has already influenced all the examples of design
and control functions listed under 1, and many others not listed, although just how much is hard

to say accurately. There is little doubt that the information will continue to serve this function,
probably increasingly so as we gain more detailed knowledge.

The knowledge of coherent/p structure at level 2 can, and sometimes has already been critical
even though the number of detailed steps involved with that knowledge is small. Some examples
include the difficulties with data rate and probe size in lab experiments and grid resolution in FTS
that we now know occur as Reynolds number increases owing to the way the coherent/p structures
scale.

The most disappointing feature of the several decades of work on coherent/p structures in
the boundary layer is the near total absence of use of the information for direct building of
mathematical models. So far, outside of some small guidance in the wall model of kuhn and
Chapman and important use of the scale information and ensemble average structure model by
Perry, Henbest and Chong, there has been very little successful use of the coherent/p information
in modeling. Noteworthy attempts have been made by many, including for examl?le Landahl and
co-workers, by Beljaars and by Lilley, but thus far these have not led to computations of practical

engineering significance. The situation remains that we do most practical modeling via some form
of the RANS or equation with closure supplied by models or with even simpler equations such as

There are then two critical questions. Will this situation continue, or will we be able to build a
mathematical model directly on increased information about the coherent/p structures? Second, if
we do not build such models, will the coherent/p information be important in the simpler models?

With regard to the first question, I cannot provide an answer, as I noted at the outset; one needs
a crystal ball, and mine is cloudy. Only time will tell. One can say this much, the complexities of
the problem, some of which are outlined above, mitigate rather strongly against the creation of a
complete usable mathematical model built directly on coherent/p information. As we learn more
about details in given cases and about a wider range of cases, that becomes clearer and clearer.

However, a little careful thought suggests that even if we do not use the coherent/p information
to build a mathematical model directly, that information will be critical in the long run. I have
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not seen this argument made, and I am grateful to Professor Hussain for making me think hard

enough about the problem to see the results a little more clearly.

We need to remember that the full, unaveraged, honest-to-God Navier-Stokes equations plus
continuity (and when necessary the viscous energy equation) are an excellent model of turbulent

flows so long as the fluid is Newtonian-at least for all the data we have thus far, and this is quite a

lot for many cases. If we utilize simpler equations typically via some form of averaging, then those

simple equations must be insufficient for modeling the totality of turbulent flows precisely to the

e_tent that we have lost information in the averaging or simplifying process. This follows from the

fact that the complete Navier- Stokes equations are a good model not only in the sense that they do

describe the motion of Newtonian fluids, but also that they describe no mode; they do not predict

ezcess information suggesting behavior that cannot occur. Hence, the losses of information are not

trivial. This non-triviality is borne out again and again and again whenever we do careful testing

of models as, for example, in the 1968 and 1980-81 AFOSR-Stanford conferences but by no means

limited to those examples. An enlightening current example appears in the recent dissertation of

S. Tzuoo with J. H. Ferziger and the writer. In this work Tzuoo has been able to show that one

can build a "unified zonal model" using the k-e model equations which predicts all the available

free-shear layer cases (wakes, jets, mixing layers; near- and far-field, planar and axisymmetric) up

to the level of profiles of Reynolds stress with no discrepancy of more than 10data and computer

output, IF AND ONLY IF the internal constants in the k-e model equations are made explicit

functions of two external non-dimensional governing parameters, a generalized Sabin-Abramovitz

parameter and a vortex stretching parameter. These results show quite clearly that the key factor

is just the kind of variation in the physics from one "zone" of flow to another suggested by the
metaphor above about a "zoo of animals".

This line of thought , and tile discussions in the session organized by Professor Hussain, lead me

to what seems an important conclusion. The most important use of coherent/p information may be

in making the critical decisions about what terms can not be dropped in forming model equations

suitable for particular problems. This information is often relatively small in content, and used only

for a moment at one point in a long analysis; its importance is consequently often underestimated.

Let me give an example of central importance in fluid mechanics to make the point. Prandtl's

derivation of the boundary layer equations, generally accepted as the genesis of modern fluid

mechanics, depends critically and explicitly on the use of the empirical information that the

shear layer thickness is small compared to its length in the streamwise direction. Mathematicians

have sometimes argued this can be justified on mathematical grounds; it cannot. At least all

such arguments I have seen are circular in some subtle way, and more important, the Navier-

Stokes equations themselves are not mathematical in content, but rather use mathematics to

provide a model of the physical world. The relevant underlying theory, including the example,

are discussed in detail in my own monograph Similitude and Approximation Theory, reprinted in

1986 by Springer-Verlag.

In thinking about the future of our knowledge of coherent/p structures and their uses in the

boundary layer, I want to make one more remark before drawing conclusions. Given the complex-

ities of the physics described, IN PART, above it is clear why we have had so much difficulty in

finding the details of the dynamics and in reaching agreement in the research community about

even the kinematic details. Some years ago a strongly concerned government agency asked me if

the time was right for a push on turbulence in order to get through the problem I said, "No!" I

did not think so because there were not enough good ideas or research tools, and the added man-

power, which could be brought to bear by more money, would not be likely to advance matters

significantly faster. If asked that question today, I would give the opposite answer. I would do

so precisely because the data bases now available at NASA Ames drastically alter the situation.

While it is true that the data bases so far only cover a handful of cases and are restricted to

unfortunately low Reynolds Numbers, nevertheless they do provide in central, exemplary cases,

a means for investigating questions that lay entirely beyond feasibility a decade ago and equally

important they allow this to be done with several orders of magnitude increase in speed and

decrease in manpower compared with conventional laboratory work. More specifically, when we

bring together the existing knowledge on boundary layer structure available in the various research

groups such as those of C. R. Smith at Lehigh, R. E. Falco at Michigan State, R. Blackwelder

at USC and H. Eckelmann and others at Gottingen and add in the heat transfer results in the

groups of R. J. Moffat at Stanford, H. Kasagi at Tokyo, and M. Khabahkpasheva in Novosibirsk,

to mention only a few of the more active groups, some clear questions emerge. When we take these

questions to the computer data bases of Spalart and of Moin/Kim, as a number of workers in this
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conference, including S. K. Robinson (whose dissertation will focus on these question), have begun
to do, answers very quickly begin to emerge. Some of these results answer questions that have
been troubling me for a decade or two, and more important, the reasons why we had not been
able to resolve them before are also clear. All this is very promising and augurs very well for rapid
progress over the next few years on the question of the kinematics and dynamics of coherent/p
structures in turbulent boundary layers.

CONCLUSIONS

1 tt_A,.rs* _d;.::g ef *.he phys;_c_ c-_.--._ _._-.:'r_.. H:.'-_ry _e!!_ ".:'_"'_ c.!:',,.c._'_c.!:_-_.y_"h_1_" i,, i,_},v, L_.L,
and sometimes surprising ways.

2. "Help" has been and may remain more at levels 1 and 2 than at level 3. But even at level 3, in
direct mathematical modeling, the use of coherent/p information may be critical in deciding what
terms can not be dropped in simplifying model equations for particular flow zones.

3. These potential gains more than justify the current level of research efforts on understanding
coherent/p structures.
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Coherent Structures

By CHAItLES (3. SPEZIALE 1

In order to develop more quantitative measures of coherent structures that would have compar-

ative value over a range of experiments, it is essential that such measures be independent of the

observer. It is only through such a general framework that theories with a fundamental predictive
value can be developed. The triple decomposition

=,_+,_ +_, (1)

(where _ is the mean, _bc is the coherent part, and _b_ is the random part of any turbulent field _b)

serves this purpose. For a statistically steady turbulence which possesses coherent structures with

a dominant temporal frequency f we can take (see Hussain 1983)

= lim 1 --I T

T-*co r JO _(X, t)dt

(2)

N

_be =<_b' >= lim 1E_b'(x,t+ti) (3)
N....*co N

i=1

where _b' = q_- _, tl = i/f, and < • > denotes the phase average. For more general turbulent flows

(that are not necessarily statistically steady or do not possess coherent structures with a dominant
temporal frequency), on can take

N

= lim I ZN--,o0 N _(i) (x, t) (4)
i=1

where an ensemble average is taken over N repeated experiments with the same initial and bound-

ary conditions. The coherent part of the turbulence can be taken to be

¢c =< 4,'{E> (5)

where < .}E > denotes a suitable conditional average of _bI (i.e., an ensemble average over flow

structures subject to the occurrence of some event E. With such triple decompositions, the

coherent and random parts of the turbulence will be the same for all observers (see Speziale 1986).

It should be noted that double decompositions (see Hussain 1983, 1986) give rise to coherent

and random parts of any turbulent field ¢ that, in general, depend on the observer. Double

decompositions should therefore only be used when the mean flow vanishes or is negligibly small

compared to the coherent notion (see Speziale 1986). Otherwise, one runs the risk of extracting

flow structures that are overly biased by the observer.

The equations of motion for the mean and coherent flow fields, based on the triple decomposition
(1), can be written in the form (see Hussain 1983):

D_i Op 0

Dt - 0_, +,.v'a,- _-(,,._uc, +_) (6)

1 ICASE, NASA Langley Research Center



330 C. G. Speziale

Duci Opc Of_i Ouc

Dt - Oz-'--i,+ uV2 uc" - u,_ Ozj ucj Ozj

DfLi Op 0
+ uV2_i - -- < urlu_j >

Dt Omi Ozj

(7)

where v is the kinematic viscosity of the fluid, p is the modified pressure, and u = _ + Uc + u_ is

the velocity field which is subject to the continuity equation which yields the constraints

v._=o (8)

W'_c =0 (9)

v. a_ = o (lO)

In order to achieve closure of the equations of motion (6)- (10), the Reynolds stress terms

< uriur_ >, urlur_ (11)

need to be modeled. The time-averaged Reynolds stress url u,. i can be modeled using the currently

popular two-equation models or second-order closure models (see Launder, Reece and Rodi 1975

and Lumley 1978). The phase-averaged Reynolds stress < uri u_j > primarily serves as an energy

drain on the coherent motion and thus it is plausible that it could be modeled using a gradient

transport hypothesis (see Hussain 1983). Hence, eddy viscosity models of the form

( Ouc, Ouc_ )
< UriUr'i _>: --liT _ O_Cj "l'-

(12)

can be considered where UT is an appropriate eddy viscosity (sufficiently far from solid bound-

aries, the Smagorinsky model can be tried). This approach, which bears a certain resemblance

to large-eddy simulations, has an advantage in that the coherent motion uc is calculated directly

Furthermore, the level of computation required is substantially less than that needed for a di-
rect numerical simulation since a coarse mesh can be used (the fine-scale turbulence is modeled)

and for some problems (e.g., turbulent mixing layers) the coherent motion is approximately two-

dimensional. In my opinion, there is a good chance that such an approach could yield useful

new information concerning the nature of coherent structures and it is well worth pursuing future

investigations along these lines.
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